Functionally graded shape memory polymers developed

Jan 05, 2011 By Ariel DuChene
Functionally graded shape memory polymers developed

(PhysOrg.com) -- A team led by Patrick T. Mather, director of Syracuse Biomaterials Institute (SBI) and Milton and Ann Stevenson professor of biomedical and chemical engineering in Syracuse University’s L.C. Smith College of Engineering and Computer Science (LCS), has succeeded in applying the concept of functionally graded materials (FGMs) to shape memory polymers (SMPs).

SMPs are a class of "smart" materials that can switch between two shapes, from a fixed (temporary) shape to a predetermined permanent shape. Shape memory polymers function as actuators, by first forming a heated article into a temporary shape and cooling. Then, by using a second stimulus (i.e. heat), the article can spring back to its original shape.

To date, SMPs have been limited to two-way and three-way shape configurations. Mather has successfully built a process where sections of one shape memory polymer independently react to different temperature stimuli. This work has been highlighted on the cover of the January 2011 issue of Soft Matter, the leading journal in the field of soft matter research.

Functionally graded materials are defined as synthetic materials where the composition, microstructure and other properties differ along sections of the material. The goal of Mather’s research was to apply this theory to SMPs and create a material that could be fixed and recovered in one section without impacting the response of the other sections.

Mather created a temperature gradient plate by applying heat at one end and using a cooling unit at the other end. The actual temperature gradient was verified by measuring different positions along the plate. The SMP was cured on this plate to set the different transition temperatures.

Mather first tested the graded SMP by using micro-indention on the surface and then heating the polymer. When heated, each indentation recovered to the original smooth surface as each one’s transition temperature was reached along the surface.

The second test involved cutting the SMP and bending back the cut sections. This SMP was placed on a Pelletier plate that uniformly heated the material. It was observed that as the plate warmed, each “finger” of the cut sheet independently recovered back to its unbent shape as the temperature of the plate reached its transition temperature.

“We are very excited about this new approach to preparing shape memory polymers, which should enable new devices with complex mechanical articulations,” says Mather. “The project demonstrated how enthusiastic and persistent undergraduate researchers could contribute substantively, even in the throes of their busy course schedules.”

There are numerous applications opportunities for Mather’s functionally graded SMPs, from low-cost temperature labels that could measure temperatures in areas that are not accessible by conventional methods or not amenable to continuous monitoring, to indirectly indicate sterilization completions, or for incorporation into product packaging (for shipping industry or food storage) to indicate the maximum temperature for a product exposure.

The LCS team of researchers led by Mather included graduate student Xiaofan Luo and undergraduate student Andrew DiOrio.

Explore further: Mathematicians model fluids at the mesoscale

Provided by Syracuse University

5 /5 (3 votes)

Related Stories

Polymer remembers four shapes

Mar 15, 2010

(PhysOrg.com) -- A new study by General Motors has found that a polymer used commercially in fuel cell membranes can "memorize" four shapes, each assigned to a different temperature. The material could find ...

New process promises to revolutionize manufacturing of products

Sep 01, 2010

A new "smart materials" process - Multiple Memory Material Technology - developed by University of Waterloo engineering researchers promises to revolutionize the manufacture of diverse products such as medical devices, microelectromechanical ...

Understanding shape-shifting polymers (w/ Video)

Dec 06, 2010

(PhysOrg.com) -- Shape-memory polymers are not a new discovery, as anyone who has played with Shrinky-Dinks or who has used heat-shrink tubing for wires in an electronic circuit can testify. But now, thanks ...

How shape-memory materials remember

Apr 26, 2010

X-ray studies and fundamental calculations are helping physicists gain molecular level insight into the workings of some magnetic shape-memory materials, which change shape under the influence magnetic fields.

Recommended for you

Squeezing out new science from material interfaces

10 hours ago

With more than five times the thermal conductivity of copper, diamond is the ultimate heat spreader. But the slow rate of heat flow into diamond from other materials limits its use in practice. In particular, ...

The dark side of cosmology

15 hours ago

It's a beautiful theory: the standard model of cosmology describes the universe using just six parameters. But it is also strange. The model predicts that dark matter and dark energy – two mysterious entities ...

Studying effects of target 'tents' on NIF

15 hours ago

A systematic study of the effects on National Ignition Facility (NIF) implosions of the ultra-thin mounting membranes that support target capsules inside NIF hohlraums was reported by LLNL researchers in ...

Mathematicians model fluids at the mesoscale

16 hours ago

When it comes to boiling water—or the phenomenon of applying heat to a liquid until it transitions to a gas—is there anything left for today's scientists to study? The surprising answer is, yes, quite ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.