Filtering kitchen wastewater for plants

Jan 05, 2011

Water is a precious commodity, so finding ways to re-use waste water, especially in arid regions is essential to sustainability. Researchers in India have now carried out a study of various waste water filtration systems for kitchen waste water and found that even the most poorly performing can produce water clean enough for horticultural or agricultural use. They report details in the International Journal of Environmental Technology and Management.

Recycling domestic wastewater is becoming an important part of water management and emerging technology and a shift in attitude to waste in the developing world means that more people would be willing to re-use this so-called given the choice. Unfortunately, affordable and effective domestic wastewater treatment is not yet available particularly in parts of the world where financial and technical constraints are acute. Nevertheless domestic wastewater from showers, kitchen sinks and laundry washing in homes and offices offers a potential resource that differs from industrial wastewater. Domestic waste water might contain an organic load from food processing, utensil washing in the kitchen, soap and detergents, with the main contaminants being proteins, carbohydrates, detergents, oil and grease and other dissolved and suspended compounds.

Subrata Dasgupta of the Council of Scientific and Industrial Research, in Kolkata, and colleagues have explored the potential of ceramic microfiltration membrane s used alone or in conjunction with different physicochemical treatments, such as biotreatment and adsorption, for cleaning up dirty dishwater. The team compared cross-flow microfiltration (CMF) with tubular ceramic membranes in single channel and multichannel configurations. Biotreatment involved using activated sludge or an adsorptive treatment based on the prepared dried roots of Eichhornia crassipes, an aquatic weed that grows well in polluted water.

The researchers found that, as one might expect, a 19-channel ceramic membrane performed better in terms of permeate quality than a single-channel filter. In terms of BOD (biological oxygen demand), COD (chemical oxygen demand), turbidity, TSS (total suspended solids), microfiltration of the treated with adsorbent appeared to be most promising compared with other the approaches tested. In that approach, 98% removal of BOD and 99% removal of COD were seen. The quality of the treated water was found to be fit for use in horticulture and irrigation, the team concludes.

Explore further: Heavy rains leave 22 dead in Nicaragua

More information: "Comparative study on treatment of kitchen-sink wastewater using single and multichannel ceramic membrane" in Int. J. Environmental Technology and Management, 2010, 13, 336-347

add to favorites email to friend print save as pdf

Related Stories

UM dorms will go 'off the water grid'

Nov 03, 2010

A $2 million grant from the National Science Foundation (NSF) will allow the University of Miami (UM) College of Engineering to develop an autonomous net-zero water dormitory at UM. The project will make it possible for the ...

Roots meshed in waste materials could clean dirty water

May 05, 2010

Plant roots enmeshed in layers of discarded materials inside upright pipes can purify dirty water from a washing machine, making it fit for growing vegetables and flushing toilets, according to Penn State ...

Recommended for you

Major breakthrough could help detoxify pollutants

11 hours ago

Scientists at The University of Manchester hope a major breakthrough could lead to more effective methods for detoxifying dangerous pollutants like PCBs and dioxins. The result is a culmination of 15 years of research and ...

Heavy rains leave 22 dead in Nicaragua

19 hours ago

Days of torrential rains in Nicaragua left 22 people dead and left homeless more than 32,000 others, according to an official report Saturday.

Plastic nanoparticles also harm freshwater organisms

Oct 18, 2014

Organisms can be negatively affected by plastic nanoparticles, not just in the seas and oceans but in freshwater bodies too. These particles slow the growth of algae, cause deformities in water fleas and impede communication ...

User comments : 0