Fast, easy way to make hydrogen nanosensors found by scientists

Jan 13, 2011

A team of Northern Illinois University scientists, with a major role played by NIU Ph.D. students, has discovered a new, convenient and inexpensive way to make high performance hydrogen sensors using palladium nanowires.

The technology could help enable a scale-up for potential industrial applications, such as safety monitors in future hydrogen-powered vehicles.

Highly flammable hydrogen gas cannot be odorized like . The new technology produces nanoscale sensors that work extremely fast and would allow for closing of safety valves before dangerous concentrations of the gas could be reached.

Scientists have known that palladium nanowires demonstrated promise as hydrogen gas sensors in speed, sensitivity and ultra-low . But the utilization of single palladium nanowires faced challenges in several areas, including nanofabrication.

“We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be easily and cheaply made,” said lead author Xiaoqiao (Vivian) Zeng, a Ph.D. student in chemistry and biochemistry at NIU. The new research is published in the January edition of the American Chemical Society's prestigious journal Nano Letters.

“The new types of hydrogen sensors are based on networks of ultra-small (< 10 nanometers) palladium nanowires achieved by sputter-depositing palladium onto the surface of a commercially available and inexpensive filtration membrane,” Zeng said.

The research was conducted at both Northern Illinois University and Argonne National Laboratory. The scientists also found that the speed of the sensors increases with decreasing thicknesses of the palladium nanowires. The sensors are 10 to 100 times faster than their counterparts made of a continuous palladium film of the same thickness.

“The superior performance of the ultra-small palladium nanowire network-based sensors demonstrates the novelty of the fabrication approach, which can be used to fabricate high-performance sensors for other gases,” said NIU Presidential Research Professor of Physics Zhili Xiao, leader of the research team and co-adviser to Zeng.

Xiao noted that Zeng’s exceptional contribution to the research is particularly impressive for a Ph.D. candidate. Zeng came to NIU in the fall of 2008 after earning her master’s degree from the University of Science and Technology Beijing. She is now a recipient of the NIU Nanoscience Fellowship, jointly supported by the university and Argonne.

“It is extremely competitive to publish an article in Nano Letters, which has a very high impact factor that is better even than the traditionally prestigious chemical and physical journals,” Xiao said. “We’re proud of Vivian’s achievements and grateful for her creativity and diligence.

“Nanoresearch is truly interdisciplinary,” Xiao added. “Chemists have undoubtedly demonstrated advantages in nanofabrication by utilizing methods of chemical synthesis to obtain extreme nanostructures, while physicists have strengths in exploration of new physical properties at the nanoscale. This research benefitted tremendously from Vivian’s expertise in chemistry. In fact, the substrates used to form the novel networks of nanowires are common filtration members known to chemists.”

Explore further: Study sheds new light on why batteries go bad

Provided by Northern Illinois University

5 /5 (3 votes)

Related Stories

New hydrogen sensor faster, more sensitive

May 25, 2005

The same kind of chemical coating used to shed rainwater from aircraft and automobile windows also dramatically enhances the sensitivity and reaction time of hydrogen sensors. Hydrogen sensor technology is a critical component ...

Nano Cluster Devices Unveils Hydrogen Sensor Prototype

Jun 17, 2005

A new prototype hydrogen sensor has been unveiled by Christchurch, New Zealand, based Nano Cluster Devices Ltd. Hydrogen sensors have many applications in existing industries for leak detection and process control, and could ...

Joining molecules together in Nobel matrimony

Oct 07, 2010

Three chemists who fundamentally changed the way we make everything from drugs to plastics to carbon-based electronics won the Nobel Prize in Chemistry for their work. ...

New sensor nanotechnology simplifies disease detection

Oct 04, 2010

Researchers at Stony Brook University have developed a new sensor nanotechnology that could revolutionize personalized medicine by making it possible to instantly detect and monitor disease by simply exhaling ...

Recommended for you

Study sheds new light on why batteries go bad

17 hours ago

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

Moving silicon atoms in graphene with atomic precision

Sep 12, 2014

Richard Feynman famously posed the question in 1959: is it possible to see and manipulate individual atoms in materials? For a time his vision seemed more science fiction than science, but starting with groundbreaking ...

Researchers create world's largest DNA origami

Sep 11, 2014

Researchers from North Carolina State University, Duke University and the University of Copenhagen have created the world's largest DNA origami, which are nanoscale constructions with applications ranging ...

Excitonic dark states shed light on TMDC atomic layers

Sep 11, 2014

(Phys.org) —A team of Berkeley Lab researchers believes it has uncovered the secret behind the unusual optoelectronic properties of single atomic layers of transition metal dichalcogenide (TMDC) materials, ...

User comments : 0