The way of the Droid is near

Jan 05, 2011 By Dave Zobel

Noon: a crowded cafeteria. You drift past the salad bar, glumly eyeing the line at the pizza counter. But what's this rolling toward you? It's a little robot-vaguely reminiscent of the movie 'droid WALL∙E-and the two of you are moments from a head-on collision.

Do you halt in your tracks? Jump back? Veer away? Feint left and dodge right? Perhaps you just tromp right across the motorized monstrosity-your little act of revenge against every insane in every B movie you ever watched as a kid.

These questions aren't merely academic, because the situation isn't at all hypothetical. Over the past several months, a little wheeled gizmo sporting stereo camera "eyes" has occasionally been spied lurking in Caltech's Chandler Dining Hall around lunchtime. Its creator, graduate student in control and dynamical systems Peter Trautman, has been using it to study interactions between humans and machines. His project, to be presented at next week's TEDxCaltech conference, is teaching robots how to behave-and survive-in crowded environments.

Nor is this just for his own amusement. Robots, he says, won't become common in hospitals, stores, and museums until, like teenaged drivers, they've learned to maneuver safely and quickly through crowds. But how? By sauntering forth in a straight line? That's dangerous, overaggressive-and frankly obnoxious. Taking wide, evasive detours? Too inefficient. Waiting for gaps in traffic? That risks perpetual immobility: what roboticists call the Frozen Robot Problem (FRP).

Teenagers thronging a mall, rush-hour drivers, skiers on a crowded slope: all exhibit movement in response to the movements of others. It's one thing to observe all this from afar, but the moment a robot sets foot into a crowd, the observer becomes the observed.

Modeling these convoluted feedback loops is mathematically intractable; that's why most roboticists to date have relied on either intuition and psychology (what do humans "expect" of our little mechanical mascots?) or artificial intelligence (letting the robot itself discover by trial and error what works and what doesn't).

Neither of those strategies addresses the Frozen Robot Problem, says Trautman, cheerfully quoting Caltech Nobelist Richard Feynman: "What I cannot create, I do not understand." A human pedestrian constantly makes small speed and direction adjustments, and any automaton hoping to navigate, say, a mall on Thanksgiving weekend cannot emulate this behavior without first comprehending it. This, in fact, was his breakthrough: the realization that solving the FRP would require not merely implementing cooperative collision avoidance, but also forecasting it in others. Fortunately, although the logic of crowds is complex and largely subconscious, he discovered that he only needed to model a few of its characteristics (intentionality, contact avoidance, and some basic dynamics of the human body), all of which could be measured by filming pedestrians. The result: a probabilistic algorithm that produces natural, brisk motion and also chooses shorter, safer trajectories than most humans do.

Along the way, he found some surprises. For instance, it turns out that a robot moving with purpose is generally ignored by passersby. But once it pauses, individuals start harassing it; a crowd may gather; and when the machine tries to move again, it can't. "Sometimes," Trautman marvels, "people will even try to force it into a corner."

In other words, in a schoolyard full of bullies, the robots are having to learn the same lesson we once learned:

"Head down; avoid eye contact; keep walking."

Explore further: Dancing, talking robots show off at Madrid congress

add to favorites email to friend print save as pdf

Related Stories

The art of controlling a robot

Jan 28, 2010

Robots are used in many different areas, for instance in factories, in space and in health care. To plan and control the motions of a robot is a challenging task, which Uwe Mettin from Umeľ University, Sweden, has analyzed ...

Simple Robot Climbs Through Tubes (w/ Video)

May 12, 2010

Last week was the IEEE's International Conference on Robotics and Automation, held in Anchorage, Alaska. One of the most interesting robots was a simple -- and fast -- bot designed to climb easily through tubes.

Organized chaos gets robots going (Update)

Jan 17, 2010

(PhysOrg.com) -- Even simple insects can generate quite different movement patterns with their six legs. The animal uses various gaits depending on whether it crawls uphill or downhill, slowly or fast. Scientists ...

Robots closer to performing bed baths (w/ Video)

Nov 11, 2010

(PhysOrg.com) -- Cody, a robot built at the Georgia Institute of Technology in the U.S., has been demonstrated initiating contact with a live person and cleaning their arm and leg using wiping motions. This ...

Recommended for you

Robots put to work on e-waste

Nov 18, 2014

UNSW researchers have programmed industrial robots to tackle the vast array of e-waste thrown out by Australians every year.

Social robots helping children with diabetes

Nov 14, 2014

Social robots are helping diabetic children accept the nature of their condition and become more confident about their futures, scientists have announced following a four-and-a-half year research study.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.