Device controls, measures spin current injected into semiconductor material

January 4, 2011

An international research team formed by physicists from Hitachi, the University of Cambridge and University of Nottingham in the UK, Charles University in the Germany, the Institute of Physics (ASCR), in the Czech Republic, and the Texas A&M University, have successfully developed the technology that enables control and measurement of spin current, a magnetic characteristic of electrons, in the same way as electrical current, using a gallium-arsenide semiconductor material.

In contrast to electronics technology which led industrial development in the 20th century and is based on the flow of electron charge (electric current), this technology is an achievement which leads the way in spintronics which is based on the other basic attribute of an electron, its . This technology is expected to contribute to significant energy conservation and increased functionality in social infrastructure, quantum computing and new directions in scientific development. The results of this development will be published in the 24th December 2010 edition of Science.

Since the development of the transistor in the 1940s, the operation of electronic devices which contributed to the advancement of the electronics industry have utilized physical principles to electrically manipulate and measure the charge of electrons (electric current). Meanwhile, on the other hand, the electron has another basic attribute, its elementary magnetic moment so-called spin. The application of spintronics based on the manipulation of the spin of an electron is highly expected to open the way to new low-power consuming electronics, hybrid electric-magnetic systems and devices with completely new functionalities. The theory of electrically controlling and measuring the spin of an electron was proposed 20 years ago in the area of spin-transistors. However, many fundamental and critical issues in spintronics such as spin-injection, generation of pure spin-current, spin-manipulation and spin observation needed to be achieved to verify this theory. Until the present time, there have been no demonstration to manipulate spin current in the same way as electrical current or the measurement thereof.

In response to this need, and international research team measured separately an up and down spin (Spin-Hall Effect) at an extremely low temperature of -269°C in a gallium-arsenide semiconductor, a non-magnetic material in 2005. Further in 2009, using the same gallium arsenide semiconductor at a temperature of -53°C, the team measured the flow of spin polarized current over a distance of a few microns (Spin-injection Hall effect). In the current development, the up or down spin was controlled by a gate voltage, and the successful ON/OFF operation as a transistor have been verified. In this experiment, a circularly polarized light was used to generate pure spin current in the semiconductor. If we can develop spin-injection technology for ferromagnetic material, the spintronics device which was proposed as a theory by Supriyo Datta & Biswajit A. Das in 1990, will be realized. Further, realizing a solid device which can control and detect the polarization of the light, a new dimension of light polarization can be employed as information in future optical communication to open the way for even larger capacity information transmission systems, or in new analytical systems to which use the polarization of light to study the characteristics of biological or molecular material.

The device consists of a planar photodiode with a pn-junction diode and a n-type channel which forms the Hall Bar. By shining light on the diode, photo-excited electrons generated by the photovoltaic effect are injected into the device. The degree of circular polarization of the incident light is used to generate the spin-polarized electrons. The injected spin precede as a spin-current (Spin-injection Hall effect). At this point, if a p-type electrode is formed above the n-type channel and a voltage is applied, according to quantum relativistic effects, the precession of the spins are controlled by the input gate-electrode voltages. These effects are also responsible for the onset of transverse electrical voltages in the device, which represent the output signal, dependent on the local orientation of precessing electron spins.

Explore further: Spin-polarized electrons on demand

Related Stories

Spin-polarized electrons on demand

January 15, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Spin-polarized electrons on demand

January 21, 2009

Many hopes are pinned on spintronics. In the future it could replace electronics, which in the race to produce increasingly rapid computer components, must at sometime reach its limits. Different from electronics, where whole ...

Researchers create all-electric spintronics

October 27, 2009

A multidisciplinary team of UC researchers is the first to find an innovative and novel way to control an electron's spin orientation using purely electrical means.

Spin polarization achieved in room temperature silicon

November 27, 2009

( -- A group in The Netherlands has achieved a first: injection of spin-polarized electrons in silicon at room temperature. This has previously been observed only at extremely low temperatures, and the achievement ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.