Putting the dead to work for conservation biology

Jan 19, 2011
This is the cover image for Trends in Ecology & Evolution, published by Elsevier. Credit: Elsevier

scientists who use the fossil record to understand the evolutionary and ecological responses of present-day species to changes in their environment – are putting the dead to work.

A new review of the research in this emerging field provides examples of how the can help assess environmental impact, predict which will be most vulnerable to environmental changes and provide guidelines for restoration.

The literature review by conservation paleobiologists Gregory P. Dietl of the Paleontological Research Institution and Cornell University and Karl W. Flessa of the University of Arizona is published in the January 2011 issue of the journal Trends in Ecology and Evolution. The National Science Foundation funded the research.

"Conservation paleobiologists apply the data and tools of paleontology to solving today's problems in biodiversity conservation," says Dietl, the director of collections at the Paleontological Research Institution.

The primary sources of data are "geohistorical," Dietl says, meaning the fossils, the geochemistry and the sediments of the geologic record.

"A conservation paleobiology perspective has the unique advantage of being able to identify phenomena beyond time scales of direct observation," he says.

Flessa says, "Such data are crucial for documenting the species we have already lost – such as the extinct birds of the Hawaiian islands -- and for developing more effective conservation policies in the face of an uncertain future."

Most conservation options are derived from modern-day observations alone, they state, and may not accurately predict the responses of species to the changing climates of the future.

Geohistorical records, the authors wrote, are therefore critical to identifying where—and how-- species survived long-ago periods of climate change

Ancient DNA, for example, has been used to show that the arctic fox (Alopex lagopus) was not able to move with shifting climates as its range contracted, eventually becoming extinct in Europe at the end of the Pleistocene. However, the species persisted in regions of northeastern Siberia where the climate was still suitable for arctic foxes.

In another tale from the beyond, fossil evidence suggests that the birds of the Hawaiian Islands suffered large-scale extinction around the time of the arrival of the Polynesians. Studies comparing the ecological characteristics of bird species before and after this extinction reveals a strong bias against larger-bodied and flightless, ground-nesting species.

The pattern suggests that hunting by humans played a role in the extinction of the flightless species. By the 18th century, the time the first Europeans arrived in the islands; most large-bodied birds had already disappeared. European colonization of the islands led to a second wave of extinctions.

Those birds that survived had traits that helped them weather two onslaughts.

"Conservation research too rarely makes use of geohistorical data," says H. Richard Lane, program director in the National Science Foundation Division of Earth Sciences, which funds both Dietl's and Flessa's work. "Most such studies focus on short timescales ranging from years to decades. Looking back farther—much farther—in time may be crucial to comprehending events unfolding today."

In their review, Dietl and Flessa cite a study on the frequency of insect damage to fossil angiosperm leaves in the Bighorn Basin of Wyoming dating from before, during and after the Paleocene-Eocene Thermal Maximum (PETM, some 55.8 million years ago).

The PETM, scientists believe, is one of the best deep-time analogs for current global climate change questions because global average temperatures during this time period rose by ~ 9-14F˚ (5-8˚C) in less than 10,000 years.

Results from the insect research suggest that herbivory intensified during the PETM global warming episode.

"This finding provides insights into how the human-induced rise in atmospheric carbon dioxide is likely to affect insect-plant interactions in the long run," the authors wrote, "which is difficult to predict from short-term studies that have highly species-specific responses."

Time-averaged information, as is captured in the geologic record, says Lane, allows us to sort out natural changes from those induced by human activities.

The dead can help us even in remote places like the Galapagos Islands.

Scientists have used the fossil pollen and plant record there to shows that at least six non-native or "doubtfully native" species were present before the arrival of humans. This baseline information, says Dietl, "is crucial to a current conservation priority in the Galapagos: the removal of invasive species."

An important role of geohistorical data is to provide access to a wider range of past environmental conditions—alternative worlds of every imaginable circumstance.

The past may lead to better conservation practices that are crucial for life, not death, on Earth.

The dead, it turns out, do tell tales.

Explore further: Half-tonne of smuggled ivory seized in Saudi

Provided by Paleontological Research Institution

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Putting the dead to work

Jan 14, 2011

Conservation paleobiologists -- scientists who use the fossil record to understand the evolutionary and ecological responses of present-day species to changes in their environment -- are putting the dead to ...

Climate threatens birds, says new bird report

Mar 16, 2010

Climate changes will have an increasingly disruptive effect on bird species in all habitats, with oceanic and Hawaiian birds in greatest peril, according to a new report on the state of birds released March 11 by U.S. Secretary ...

Threatened or invasive? Species' fates identified

Jun 13, 2008

A new ecological study led by a University of Adelaide researcher should help identify species prone to extinction under environmental change, and species that are likely to become a pest.

Researcher finds fossilized shell-breaking crab

Apr 17, 2008

While waiting for colleagues at a small natural history museum in the state of Chiapas, Mexico last year, Cornell paleontologist Greg Dietl chanced upon a discovery that has helped rewrite the evolutionary ...

Recommended for you

UN biodiversity meet commits to double funding

Oct 17, 2014

A UN conference on preserving the earth's dwindling resources wrapped up Friday with governments making a firm commitment to double biodiversity aid to developing countries by 2015.

Climate change alters cast of winter birds

Oct 17, 2014

Over the past two decades, the resident communities of birds that attend eastern North America's backyard bird feeders in winter have quietly been remade, most likely as a result of a warming climate.

New data about marsh harrier distribution in Europe

Oct 17, 2014

The use of ringing recoveries —a conventional method used to study bird migration— in combination with more modern techniques such as species distribution modelling and stable isotope analysis helps to ...

User comments : 0