Taking mating cues from many sources, pathogen adapts to thrive and infect

January 24, 2011

The success of a fungal pathogen in becoming a persistent and opportunistic source of infection in human beings may be due to a mating strategy that can best be described as "don't be too choosy." A new Brown University study finds that Candida albicans will respond to the pheromones of several different species, not just its own, and if an opposite-sex partner isn't around, it can switch over to same-sex mating. In affairs of DNA exchange — for the yeast has no heart — Candida is exquisitely pragmatic.

When the yeast is not in a sexually active state, the same wide variety of pheromones can inspire it to clump together in tough-to-treat biofilms, said Richard Bennett, professor of biology and co-author of the paper published online in the Proceedings of the National Academy of Sciences.

The surprising finding that is so indiscriminate about pheromones could help in the fight against infections, which can sometimes be deadly for patients with compromised immune systems, Bennett said. The study illuminates both how the yeast may genetically adapt and how it can be induced to form biofilms.

"Sex can potentially generate recombinant forms of the species that may have increased drug resistance or altered pathogenic properties, a theory that we are currently testing," Bennett said. "Also, there are now direct links between mating and pathogenesis, as signaling can increase biofilm formation, an important first step in the establishment of many clinical infections."

In lab experiments led by first author and graduate student Kevin Alby, the researchers synthesized pheromones from several other Candida species. To varying degrees, many of the pheromones they used inspired mating in sexually active "opaque" C. albicans cells, including same-sex mating, while causing biofilm formation in sexually inactive "white" cells.

Bennett said the experiments were a "first step" to understanding mating signals and conditions in infectious Candida species. The next step is to determine whether other infectious fungi are similarly promiscuous and whether their previously underappreciated propensity for is perhaps based on a form of pathogenic peer pressure.

"We speculate that this could be a general advantage for fungi," he said. "If they sense other species are trying to mate, perhaps they decide they should too."

Another question, Bennett says, is whether the fungi could even be similarly receptive to chemical signals emitted by their human hosts.

Explore further: Yeast missing sex genes undergo unexpected sexual reproduction

Related Stories

Yeast missing sex genes undergo unexpected sexual reproduction

May 24, 2009

An emerging form of the pathogenic yeast Candida is able to complete a full sexual cycle in a test tube, even though it's missing the genes for reproduction. And it may also do so while infecting us, according to Duke University ...

Fighting fungal infections with bacteria

May 1, 2010

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step towards new strategies ...

Linking microbial sex and virulence

September 8, 2010

Two opportunistic pathogens that were once thought to be very different have evolved some sexual reproduction and disease-causing habits that are not only similar but also suggest that in the microbial world sex and virulence ...

Yeast 'rewired' to mate when starving

December 17, 2010

(PhysOrg.com) -- New research has found that the mating habits of the dairy yeast depends on the levels of nutrients available as well as the availability of cells of the opposite "sex."

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.