Taking mating cues from many sources, pathogen adapts to thrive and infect

Jan 24, 2011

The success of a fungal pathogen in becoming a persistent and opportunistic source of infection in human beings may be due to a mating strategy that can best be described as "don't be too choosy." A new Brown University study finds that Candida albicans will respond to the pheromones of several different species, not just its own, and if an opposite-sex partner isn't around, it can switch over to same-sex mating. In affairs of DNA exchange — for the yeast has no heart — Candida is exquisitely pragmatic.

When the yeast is not in a sexually active state, the same wide variety of pheromones can inspire it to clump together in tough-to-treat biofilms, said Richard Bennett, professor of biology and co-author of the paper published online in the Proceedings of the National Academy of Sciences.

The surprising finding that is so indiscriminate about pheromones could help in the fight against infections, which can sometimes be deadly for patients with compromised immune systems, Bennett said. The study illuminates both how the yeast may genetically adapt and how it can be induced to form biofilms.

"Sex can potentially generate recombinant forms of the species that may have increased drug resistance or altered pathogenic properties, a theory that we are currently testing," Bennett said. "Also, there are now direct links between mating and pathogenesis, as signaling can increase biofilm formation, an important first step in the establishment of many clinical infections."

In lab experiments led by first author and graduate student Kevin Alby, the researchers synthesized pheromones from several other Candida species. To varying degrees, many of the pheromones they used inspired mating in sexually active "opaque" C. albicans cells, including same-sex mating, while causing biofilm formation in sexually inactive "white" cells.

Bennett said the experiments were a "first step" to understanding mating signals and conditions in infectious Candida species. The next step is to determine whether other infectious fungi are similarly promiscuous and whether their previously underappreciated propensity for is perhaps based on a form of pathogenic peer pressure.

"We speculate that this could be a general advantage for fungi," he said. "If they sense other species are trying to mate, perhaps they decide they should too."

Another question, Bennett says, is whether the fungi could even be similarly receptive to chemical signals emitted by their human hosts.

Explore further: Hot-spring bacteria reveal ability to use far-red light for photosynthesis

Related Stories

Linking microbial sex and virulence

Sep 08, 2010

Two opportunistic pathogens that were once thought to be very different have evolved some sexual reproduction and disease-causing habits that are not only similar but also suggest that in the microbial world sex and virulence ...

Yeast 'rewired' to mate when starving

Dec 17, 2010

(PhysOrg.com) -- New research has found that the mating habits of the dairy yeast depends on the levels of nutrients available as well as the availability of cells of the opposite "sex."

Fighting fungal infections with bacteria

May 01, 2010

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step toward ...

Recommended for you

Researchers discover new strategy germs use to invade cells

Aug 20, 2014

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

Aug 20, 2014

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

User comments : 0