Nailing down a crucial plant signaling system

Jan 23, 2011

Plant biologists have discovered the last major element of the series of chemical signals that one class of plant hormones, called brassinosteroids, send from a protein on the surface of a plant cell to the cell's nucleus. Although many steps of the pathway were already known, new research from a team including Carnegie's Ying Sun and Zhiyong Wang fills in a missing gap about the mechanism through which brassinosteroids cause plant genes to be expressed. Their research, which will be published online by Nature Cell Biology on January 23, has implications for agricultural science and, potentially, evolutionary research.

"Brassinosteroids are found throughout the plant kingdom and regulate many aspects of growth and development, as well as resistance from external stresses," said Wang. "Mutant plants that are deficient in brassinosteroids show defects at many phases of the plant life cycle, including reduced , irregular growth in the absence of light, dwarfism, and sterility."

Previous research had identified a pathway of that starts when a brassinosteroid binds to a receptor on the surface of a plant cell and activates a cascade of activity that consists of adding and removing from a series of proteins.

When brassinosteroids are not present, a protein in this pathway called BIN2 acts to add phosphates to two other proteins called BZR1 and BZR2, which are part of a special class of proteins called transcription factors. The phosphates inhibit the transcription factors. But when a brassinosteroid binds to the cell-surface receptor, BIN2 is deactivated, and as a result phosphates are removed from the two . As a result, BZR1 and BZR2 can enter the cell's nucleus, where they bind directly to and promote a wide variety of .

Before this new research, the protein that detaches the phosphates and allows BZR1 and BZR2 to work was unknown. Using an extensive array of research techniques, the team was able to prove that a protein called protein phosphatase 2A (PP2A) is responsible.

"We discovered that PP2A is a key component of the brassinosteroid signaling pathway," Wang said. "This discovery completes the core signaling module that relays extracellular brassinosteroids to cue activity in the nucleus."

Further research is needed to determine whether brassinosteroid binding activates PP2A, or just deactivates BIN2, thus allowing PP2A to do this job. Additionally, PP2A is involved in a plant's response to gravity and light, among other things.

This aspect of the brassinosteroid signaling pathway bears some surprising resemblances to signaling pathways found in many members of the animal kingdom. More research could demonstrate details of the evolutionary split between non-protozoan animals and plants.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

Provided by Carnegie Institution

5 /5 (1 vote)

Related Stories

Mastermind steroid found in plants

Nov 15, 2010

Scientists have known for some time how important plant steroids called brassinosteroids are for regulating plant growth and development. But until now, they did not know how extensive their reach is. Now researchers, including ...

Plants on Steroids: Key Missing Link Discovered

Sep 08, 2009

(PhysOrg.com) -- Researchers at the Carnegie Institution's Department of Plant Biology have discovered a key missing link in the so-called signaling pathway for plant steroid hormones (brassinosteroids). Many important signaling ...

Unlocking the secrets of a plant's light sensitivity

Dec 13, 2010

(PhysOrg.com) -- Plants are very sensitive to light conditions because light is their source of energy and also a signal that activates the special photoreceptors that regulate growth, metabolism, and physiological ...

Antagonistic genes control rice growth

Dec 15, 2009

Scientists at the Carnegie Institution, with colleagues, have found that a plant steroid prompts two genes to battle each other—one suppresses the other to ensure that leaves grow normally in rice and the ...

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.