Chaperone enzyme provides new target for cancer treatments

Jan 18, 2011

UNC scientists who study how cells repair damage from environmental factors like sunlight and cigarette smoke have discovered how a "chaperone" enzyme plays a key role in cells' ability to tolerate the DNA damage that leads to cancer and other diseases.

The enzyme, known as Rad18, detects a protein called DNA polymerase eta (Pol eta) and accompanies it to the sites of sunlight-induced DNA damage, enabling accurate repair. When Pol eta is not present, alternative error-prone polymerases take its place – a process that leads to DNA mutations often found in cancer cells.

In one known example, faulty DNA repair due to Pol eta- deficiency is responsible for the genetic disease xeroderma pigmentosum-variant, which makes patients extremely susceptible to skin cancers caused by exposure to sunlight. However, scientists did not know how the cells selected the correct DNA Polymerase for error-free repair of each type of DNA damage.

"We found that the mechanism that promotes the 'chaperone' enzyme to recruit Pol eta to sites of is managed by another signaling termed 'Cdc7' which we know is essential to normal regulation of the cellular lifecycle," said lead author Cyrus Vaziri, PhD, who is an associate professor of pathology and laboratory medicine and member of UNC Lineberger Comprehensive Cancer Center. Thus cells employ Cdc7 to ensure accurate DNA repair during the stage of their lifecycle that is most vulnerable to cancer-causing mutations.

The study was published in November in the Journal of Cell Biology.

According to Vaziri, the dual role that Cdc7 plays in the cell lifecycle and DNA repair offers a promising target for potential cancer therapies.

"We know that cancer have high levels of Cdc7 activity and can evade some DNA-damaging therapies such as cis-Platinum through Rad18 and Pol eta activity. We may be able to target this pathway in platinum-resistant tumors to prevent DNA repair and enhance cell killing by platinating agents," he said.

Explore further: Researchers produce first atlas of airborne microbes across United States

Related Stories

Recommended for you

Viral proteins may regulate human embryonic development

3 hours ago

A fertilized human egg may seem like the ultimate blank slate. But within days of fertilization, the growing mass of cells activates not only human genes but also viral DNA lingering in the human genome from ...

Vascular cells can fuse with themselves

Apr 20, 2015

Cells of the vascular system of vertebrates can fuse with themselves. This process, which occurs when a blood vessel is no longer necessary and pruned, has now been described on the cellular level by Prof. ...

Key element in bacterial immune system discovered

Apr 20, 2015

A University of Otago scientist is a member of an international research team that has made an important discovery about the workings of a bacterial immune system. The finding could lead to the development ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.