Cell death pathway linked to mitochondrial fusion

January 24, 2011

New research led by UC Davis scientists provides insight into why some body organs are more susceptible to cell death than others and could eventually lead to advances in treating or preventing heart attack or stroke.

In a paper published Jan. 21 in the journal Molecular Cell, the UC Davis team and their collaborators at the National Institutes of Health and Johns Hopkins University report that Bax, a factor known to promote , is also involved in regulating the behavior of , the structures that provide energy inside living cells.

Mitochondria constantly split and fuse. The proteins that control the splitting of mitochondria also promote a process called apoptosis, or programmed cell death. In contrast, the proteins that control mitochondrial fusion help protect against cell death. Cell death can happen when cells are starved of oxygen, for example during a or stroke.

have a single that controls fusion, but both human and mouse cells have two proteins, called MFN1 and MFN2, which control outer . Using mitochondria from cells derived from genetically modified "knockout" mice, Suzanne Hoppins, a postdoctoral researcher at UC Davis, and Jodi Nunnari, a professor of molecular cell biology, studied how these two proteins work together and the role specific play in that process.

The research team discovered that these proteins combine with themselves or each other to form a tether between two mitochondria, leading to fusion. All three combinations -- MFN1/MFN1, MFN1/MFN2 and MFN2/MFN2 -- can promote membrane fusion, but the combination of MFN1/MFN2 is by far the most efficient, Hoppins said.

Hoppins also found that a soluble form of Bax, a protein that triggers apoptosis, can also stimulate mitochondria to fuse. It acts only through the MFN2/MFN2 combination, she found.

The form of Bax that promotes mitochondrial fusion is different from the type that leads to cell death, Nunnari said. Bax leads to cell death when it inserts itself in the mitochondrial membrane. In its soluble, free-floating form, it causes mitochondria to fuse instead.

MFN1 and MFN2 are found in different amounts in different body organs. MFN2 is more abundant in the brain and heart -- tissues where cell death can have disastrous consequences.

The paper shows how MFN2 could act to protect the brain or heart from cell death, by using Bax in a different form, Nunnari said.

"This shows that the fusion machine is both positively and negatively regulated in cells and opens doors to finding the regulatory mechanisms and discovering ways to increase or decrease the sensitivity of cells to apoptosis," Hoppins said. That could lead to new drugs that save cells, for heart disease and stroke, or that kill cells, for cancer.

Explore further: Bak protein sets stressed cells on suicide path, researchers show

Related Stories

Key step in the 'puncture' mechanism of cell death revealed

May 12, 2008

A team of medical researchers led by Dr Ruth Kluck at Melbourne’s Walter and Eliza Hall Institute (WEHI) has discovered a key step in the mechanism by which cells destroy themselves. In this process, called “apoptosis”, ...

Immune cells kill foes by disrupting mitochondria 2 ways

May 15, 2008

When killer T cells of the immune system encounter virus-infected or cancer cells, they unload a lethal mix of toxic proteins that trigger the target cells to self-destruct. A new study shows T cells can initiate cellular ...

Team uncovers new functions of mitochondrial fusion

April 15, 2010

A typical human cell contains hundreds of mitochondria—energy-producing organelles—that continually fuse and divide. Relatively little is known, however, about why mitochondria undergo this behavior.

Recommended for you

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.