Catalysis science of methanol oxidation over iron vanadate catalysts

Jan 12, 2011 by Chris Keturakis

Bulk mixed metal oxide compounds are employed as industrial oxidation catalysts for many reactions, but there is still debate in the heterogeneous catalysis literature about the nature of their catalytic active sites as well as their location in the catalyst that is responsible for the chemical transformations.

Lehigh University’s department of chemical engineering (ChE) and department of material science (MatSci) teamed up to put this debate to rest.

Authors Kamalakanta Routray (ChE), Wu Zhou (MatSci), Christopher J. Kiely (MatSci), and Israel E. Wachs (ChE, Principal Investigator) used a multitude of characterization techniques to solve this long-standing debate with Infrared (IR) and Raman spectroscopy, High Resolution Transmission Electron Microscopy (HRTEM), Temperature Programmed Surface Reaction (TPSR) spectroscopy and steady-state kinetic analysis. Their results have been chosen for publication in the first issue of the new American Chemical Society: Catalysis peer-reviewed journal released for January 2011.

This article examines one model system, the bulk mixed metal oxide FeVO4, for the oxidation reaction of methanol (CH3OH) to formaldehyde (HCHO). For comparison, the systems of crystalline V2O5 and α-Fe2O3 phases and supported 4% V2O5/α-Fe2O3, possessing a two-dimensional surface VOx layer, were also studied in order to elucidate the contributions of pure phases and the surface vanadium phase to that of the bulk FeVO4 catalyst.

Raman spectroscopic analysis confirmed that the bulk FeVO4 catalyst is indeed of pure FeVO4 phase (not possessing extraneous V2O5 or α-Fe2O3 phases) and that the supported 4% V2O5/α-Fe2O3 catalyst only contains the vanadium oxide as an amorphous surface VOx monolayer on the bulk α-Fe2O3 support. The surface composition of all the samples was further probed with CH3OH adsorption and monitored with IR spectroscopy. The CH3OH-IR results revealed that the surfaces of V2O5, bulk FeVO4, and 4% V2O5/α-Fe2O3 all look the same, indicating that their surfaces consist of a surface VOx layer.

The presence of an enriched VOx layer of ~1 nm thickness on the surface of the bulk FeVO4 catalyst was directly confirmed with High Resolution Transmission Electron Microscopy (HRTEM). The presence of such an amorphous layer is usually quite difficult to detect by more conventional methods (XRD, X-ray Absorption Spectroscopy (XAS), solid state 51NMR spectroscopy, Electron Spin Resonance (ESR), Raman spectroscopy, etc.) that tend to be dominated by the signal from the bulk phase.

Spectrokinetic analyses definitively revealed that the catalytic active sites for methanol oxidation to formaldehyde and water by the bulk FeVO4 are the surface VOx species. The role of the bulk FeVO4 phase is simply to store the lattice oxygen that is used to reoxidize the surface VOx sites and the gas phase molecular O2 does not directly oxidize the reduced VOx sites (Mars-van Krevelen reaction mechanism).

“This new insight is causing a paradigm shift in how catalytic reactions proceed by bulk mixed metal oxide catalysts that will require an examination of the previously accepted models for chemical transformations by bulk mixed catalysts,” says Dr. Wachs.

Explore further: New CMI process recycles magnets from factory floor

More information: The article is published in ACS: Catalysis 2011, 1, 54-66.

Related Stories

Anomalous Surface Compositions of Mixed Oxides

Dec 14, 2010

( -- Mixed oxide compounds are used in many fields including ceramics, catalysis, electrolysis and even pigment design. Despite the extensive applications of such mixed oxide materials, little is known about their ...

Utilizing Raman spectroscopy to monitor catalysts in action

Dec 10, 2010

Israel E. Wachs, G. Whitney Snyder Professor of Chemical Engineering at Lehigh University, and Charles A. Roberts, a graduate student at Lehigh, have published a critical review on Raman spectroscopy entitled “Monitoring ...

Building a better catalyst

Nov 08, 2010

( -- An engineering student illuminates the inner workings of vanadium oxide before an audience of biologists and chemists in Japan.

Imaging a catalyst one atom at a time

Nov 09, 2009

( -- The catalytic processes that facilitate the production of many chemicals and fuels could become much more environmentally friendly thanks to a breakthrough achieved by researchers from Lehigh ...

When gold becomes a catalyst

Jun 22, 2006

Gold has always been perceived as a precious material: you win a gold medal when you prove to be the best in a competition; you only get a Gold credit card when you are a preferential customer, and the jewelry ...

Recommended for you

New CMI process recycles magnets from factory floor

2 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

5 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Substrates change nanoparticle reactivity

11 hours ago

(—Nanoscale materials tend to behave differently than their bulk counterparts. While there are many theories as to why this happens, technological advances in scanning tunneling microscopy (STM) ...

Reviving cottonseed meals adhesives potential

14 hours ago

Cottonseed meal—the leftovers after lint and oil are extracted from cottonseed—is typically fed to ruminant livestock, such as cows, or used as fertilizer. But Agricultural Research Service scientists ...

New concrete composite can heal itself

14 hours ago

In the human body, small wounds are easily treated by the body itself, requiring no further care. For bigger wounds to be healed, the body may need outside assistance. Concrete is like a living body, in that ...

Actuators that mimic ice plants

14 hours ago

Engineers developing moveable robot components may soon take advantage of a trick plants use. Researchers at the Max Planck Institute of Colloids and Interfaces in Potsdam and Harvard University in Cambridge ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.