Direct observation of carbon monoxide binding to metal-porphyrines

January 10, 2011
A scanning tunneling microscopy image (left) shows four porphyrins. The models (right) illustrate the two systems shown in the picture. The protrusions correspond to the central atom (yellow sphere) and the two elevated portions to the saddle (orange). The characteristic cross shape results from the attached carbon monoxide molecules (red and blue). Credit: Knud Seifert (TUM)

What makes carbon monoxide so toxic is that it blocks the binding site for oxygen in hemoglobin. This very mechanism, if better understood, could be used to implement sensors to warn against carbon monoxide. Munich-based physicists, in collaboration with theorists in Lyon and Barcelona, have taken an important step by deciphering the mechanisms for binding of gas molecules to iron and cobalt porphyrins. They present their findings, and the first images, in Nature Chemistry.

The mechanism for binding oxygen to metalloporphyrins is a vital process for oxygen-breathing organisms. Understanding how small are chemically bound to the metal complex is also important in catalysis or the implementation of chemical sensors. When investigating these binding mechanisms, scientists use porphyrin rings with a central cobalt or atom. They coat a copper or silver support surface with these substances.

An important characteristic of porphyrins is their conformational flexibility. Recent research has shown that each specific geometric configuration of the metalloporphyrins has a distinct influence on their functionality. In line with the current state of research, the scientists expected only a single CO molecule to bind axially to the central metallic atom. However, detailed scanning tunnel experiments by Knud Seifert revealed that, in fact, two gas molecules dock between the central metallic atom and the two opposite nitrogen atoms. Decisive is the saddle shape of the porphyrin molecules, in which the gas molecules assume the position of the rider.

The significance of the saddle geometry became apparent in done by Marie-Laure Bocquet from the University of Lyon. Her analysis helped the researchers understand the novel binding mode in detail. She also showed that the shape of the molecular saddle remains practically unchanged, even after the two gas molecules bind to the porphyrin.

The porphyrins reacted very differently when the researchers replaced the with stronger-binding nitrogen monoxide. As expected, this binds directly to the central atom, though only a single molecule fits in each porphyrin ring. This has a significant effect on the electronic structure of the carrier molecule, and the characteristic saddle becomes flattened. Thus, the porphyrin reacts very differently to different kinds of gas – a result that is relevant for potential applications, such as sensors.

Dr. Willi Auwaerter, one of the authors, is thrilled: "What's new is that we actually saw, for the first time, the mechanism on a molecular level. We even can selectively move individual gas molecules from one porphyrin to another." The team aims to explain the physical and chemical processes on surfaces and in nanostructures. Once these fundamental questions are answered, they will take on new challenges: How big is the influence of the central atom? How does the binding change in planar conformations? How can such systems be utilized to implement catalyzers and sensors through controlled charge transfers?

Explore further: New use found for tunneling microscope

More information: Cis-dicarbonyl binding at cobalt and iron porphyrins with saddle-shape conformation, Knud Seufert, Marie-Laure Bocquet, Willi Auwärter, Alexander Weber-Bargioni, Joachim Reichert, Nicolás Lorente und Johannes V. Barth, Nature Chemistry, Online 9. January 2011 – DOI: 10.1038/NCHEM.956

Discriminative Response of Surface-Confined Metalloporphyrin Molecules to Carbon and Nitrogen Monoxide, Knud Seufert, Willi Auwaerter und Johannes V. Barth, Journal of the American Chemical Society, 2010, 132, 18141б DOI:10.1021/ja1054884

Related Stories

New use found for tunneling microscope

April 23, 2007

Dutch researchers have found a new use for scanning tunneling microscopes: visualizing individual catalysts at work at a solid-liquid interface.

Converting Nitrogen to a More Useful Form

January 9, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

Car catalysator works differently than expected

November 19, 2007

The 3-way catalysator of a car apparently works differently from the way chemists had expected. The conversion of carbon monoxide into carbon dioxide takes place not in one single step, but in at least two different steps. ...

For platinum catalysts, smaller may be better

June 28, 2010

When it comes to metal catalysts, the platinum standard is, well, platinum! However, at about $2,000 an ounce, platinum is more expensive than gold. The high cost of the raw material presents major challenges for the future ...

Miniature Gas Tank

January 28, 2005

Porous networks of organic Van der Waals crystals can selectively store methane and carbon dioxide Washing powders are generally known to consist partially of inorganic zeolites. These aluminosilicates form porous structures ...

Research gives new perspective on periodic table

December 28, 2009

Transforming lead into gold is an impossible feat, but a similar type of "alchemy" is not only possible, but cost-effective too. Three Penn State researchers have shown that certain combinations of elemental atoms have electronic ...

Recommended for you

Hydrogen from sunlight—but as a dark reaction

December 9, 2016

The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis. One of the most promising, recently identified photocatalytic new materials is inexpensive ...

Cloud formation—how feldspar acts as ice nucleus

December 9, 2016

In the atmosphere, feldspar particles act as ice nuclei that make ice crystals grow in clouds and enable precipitation. The discovery was made by researchers of Karlsruhe Institute of Technology (KIT) and University College ...

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.