Cancer drug aids cell regeneration after spinal cord injury

Jan 27, 2011
The scar tissue creates a barrier for growing nerve cells in spinal cord injuries. Scientists have now found a way to render this cell wall more permeable for regenerating nerve cells. Credit: Max Planck Institute of Neurobiology / Bradke & Hellal

In a study published today in Science (e-publication ahead of print), a global research team reports that the cancer drug Taxol (Paclitaxel) promotes the regeneration of injured nerve cells in the central nervous system (CNS) after spinal cord injury. Scientists from the Max Planck Institute of Neurobiology in Germany and the Kennedy Krieger Institute’s International Center for Spinal Cord Injury in Maryland, together with colleagues at the University of Utrecht in the Netherlands and University of Miami in Florida, found that the drug reduces the major obstacles to neural cell repair in the spinal cord of injured rats.

After a injury a number of factors are known to halt the of , including a poor capacity of neurons to grow and the development of scar tissue. Microtubules, small protein tubes which compose the cells' cytoskeleton, are jumbled in an injured CNS nerve cell, preventing the regrowth of cells. Concurrently, neural tissue is lost and a strong scar tissue develops, which creates a barrier for regeneration of the severed nerve cells.

Scientists found that Taxol has a dual role in spinal cord repair. It stabilizes the microtubule so that the injured nerve cells regain their ability to grow. Interestingly, the same drug prevents the production of inhibitory substances in the scar tissue. The scar tissue, though reduced, will still develop at the site of injury and carrying out its protective function; yet growing nerve cells are now better able to cross this barrier.

In this study, scientists supplied Taxol to the rats via a miniature pump at the injury site immediately after a partial spinal cord lesion. Within a few weeks the animals showed significant improvement in their movements.

“The drug essentially reorganizes the cells’ microtubules allowing them to ignore ‘stop signs’ and to regrow through diminished scar tissue,” said Dr. Andres Hurtado, study author and research scientist in the International Center for Spinal Cord Injury at Kennedy Krieger Institute. “It is a breakthrough for the cells and it puts us on a very promising path.”

As a clinically approved drug for cancer treatment, Taxol has many advantages, primarily that much is already known about its interactions with the human body, which can help to accelerate the path to human clinical trials. The drug can also be applied directly at the spinal cord injury site, requiring a lower dose. Further, since the drug dosage needed is far less than what is used in cancer therapy, it is likely to have lower side effects. However, the scientists caution that more basic research is needed before clinical trials, including studying whether is as effective when applied a few months post-injury.

Explore further: Mice study shows efficacy of new gene therapy approach for toxin exposures

Provided by Kennedy Krieger Institute

3.6 /5 (9 votes)

Related Stories

Promising new nanotechnology for spinal cord injury

Apr 02, 2008

A spinal cord injury often leads to permanent paralysis and loss of sensation below the site of the injury because the damaged nerve fibers can't regenerate. The nerve fibers or axons have the capacity to grow again, but ...

The dormant potential of damaged nerve cells

Jul 13, 2009

(PhysOrg.com) -- Damaged nerve cells in a finger will regrow, but those in the spinal cord do not. Why the difference? Scientists at the Max Planck Institute for Neurobiology working with an international ...

Damaged spinal cord tissue repaired by stem cells

Oct 08, 2010

Researchers at Karolinska Institutet have shown how stem cells, together with other cells, repair damaged tissue in the mouse spinal cord. The results are of potential significance to the development of therapies for spinal ...

Stem cells used to reverse paralysis in animals

Jan 28, 2009

A new study has found that transplantation of stem cells from the lining of the spinal cord, called ependymal stem cells, reverses paralysis associated with spinal cord injuries in laboratory tests. The findings show that ...

Recommended for you

How Alzheimer's peptides shut down cellular powerhouses

20 hours ago

The failing in the work of nerve cells: An international team of researchers led by Prof. Dr. Chris Meisinger from the Institute of Biochemistry and Molecular Biology of the University of Freiburg has discovered ...

User comments : 0