Calcium flow disruptions linked to heart failure

Jan 31, 2011
Calcium flow disruptions  linked to heart failure

Excessive release of calcium inside cardiac muscle can cause sudden cardiac death in heart failure patients. New research has revealed how this could happen, opening up new possibilities for combating heart disease.

Calcium plays a vital role in regulating cardiac muscle contraction. With each , calcium is released from intracellular stores known as the sarcoplasmic reticulum (SR), through specialised channels called ryanodine receptors (RyR2). The normal trigger for this response is calcium itself, in a process known as calcium-induced calcium-release.

Experts in physiology and pharmacology from the University of Bristol conducted a series of tests which showed that a protein called (PKC) can cause excessive openings of these RyR2 channels, causing too much calcium to be released into the cardiac muscle.

Reporting their findings in the Journal of Membrane Biology, the researchers describe how this excess of calcium could lead to a disturbance in the normal rhythm of the heart, referred to as arrhythmias.

Dr. Rebecca Sitsapesan, Reader in Pharmacology from Bristol University, explained: “Our findings reveal a novel mechanism for opening calcium channels inside heart cells. We show that a protein called PKC can disrupt the normal behavior of the calcium channels, causing excessive openings at the wrong time. This new information will help us to design treatments that can prevent this occurring and help in the fight against .

“Our experiments measure the opening and closing of single calcium channels. We have been able to show that PKC changes the way in which the calcium channels open and this may be one of the reasons why too much calcium is released in heart cells at the wrong time and why patients with are at risk of .”

Explore further: Researchers find unsuspected characteristics of new CF drugs, offering potential paths to more effective therapies

More information: Ca2+-dependent phosphorylation of RyR2 can uncouple channel gating from direct cytosolic Ca2+-regulation. By Simon Carter, et al, (2011) J. Mem. Biol. www.springerlink.com/content/100360/

add to favorites email to friend print save as pdf

Related Stories

Protein identified that helps heart muscle contract

Feb 16, 2010

UCSF researchers have discovered that a protein called B1N1 is necessary for the heart to contract. The findings, published in the Feb. 16 issue of the open access journal PLoS Biology, shed light not only on what makes ...

Understanding night blindness and calcium

Apr 01, 2010

Congenital stationary night blindness, an inherited condition that affects one's ability to see in the dark, is caused by a mutation in a calcium channel protein that shuttles calcium into and out of cells. Now, researchers ...

Enzyme doesn't act alone in atrial fibrillation

Jun 17, 2009

(June 17, 2009) - An overactive enzyme is behind a leaky calcium channel that plays a role in the development of atrial fibrillation, which is the most common cardiac arrhythmia that is responsible for a third of all strokes. ...

Recommended for you

Antioxidant biomaterial promotes healing

50 minutes ago

When a foreign material like a medical device or surgical implant is put inside the human body, the body always responds. According to Northwestern University's Guillermo Ameer, most of the time, that response can be negative ...

Immune response may cause harm in brain injuries, disorders

2 hours ago

Could the body's own immune system play a role in memory impairment and cognitive dysfunction associated with conditions like chronic epilepsy, Alzheimer's dementia and concussions? Cleveland Clinic researchers believe so, ...

One route to malaria drug resistance found

6 hours ago

Researchers have uncovered a way the malaria parasite becomes resistant to an investigational drug. The discovery, at Washington University School of Medicine in St. Louis, also is relevant for other infectious ...

Protein therapy successful in treating injured lung cells

7 hours ago

Cardiovascular researchers at The Ohio State University Wexner Medical Center have successfully used a protein known as MG53 to treat acute and chronic lung cell injury. Additionally, application of this protein proved to ...

User comments : 0