How brain 'wiring' develops in babies

Jan 13, 2011

Scientists funded by the Medical Research Council (MRC) have shown, for the first time, how our brain 'wiring' develops in the first few months of life. Using a new imaging technique, the scientists monitored the formation of insulating layers around nerve cells, a process called myelination, which is vital for normal brain function. Damage to the myelination process is believed to contribute to a range of neurological and psychiatric disorders, including autism and intellectual disability.

In very , myelination can be particularly prone to damage. The researchers hope that their new imaging technique will allow doctors to directly measure whether the treatments given to encourage normal brain development, while also shedding light on the biological roots of a host of neurological and .

The MRC-funded scientists based in the NIHR Biomedical Research Centre at the Institute of Psychiatry, King’s College London, scanned 14 healthy babies born at full term. The babies were scanned while asleep using a specially-modified, quiet, baby-friendly MRI scanner. To build up a picture of their myelin development, the researchers scanned the infants monthly between 3 and 11 months. By the age of nine months, myelination was visible in all brain areas and in some regions had developed to a near adult-like level.

Lead author, Dr. Sean Deoni, from King’s College London, said: “We already know that insulating myelin sheaths form the cornerstone of our neurodevelopment. Without them, messages to and from the brain would be in disarray. Our new imaging technique opens up an exciting new avenue to investigate early-stage brain development which could be pivotal in understanding devastating disorders such as , and developmental delay. By understanding exactly how myelin develops and when this process breaks down, we hope to be able to tailor treatments for vulnerable patients, such as premature babies, and understand what differentiates those that develop normally from those who have some delay or disability.”

Professor Declan Murphy, from King’s College London, who oversaw the research, said: “Until now, we’ve not been able to show how myelination develops in babies but this new MRI technique allows us to do just that. We are extremely grateful to the families who volunteered for our study to make this happen. Their contribution has provided the crucial first step towards a model for healthy . We can now use this model to understand how differences in the way our brains ‘connect up’ relates to neurological and intellectual disorders that may not become apparent until later in life. For example a next step is to scan premature babies and see how their myelin development differs from babies born full term; and how connections in the brains of babies who are at greater risk for developing autism differ from others.”

Explore further: New mapping approach lets scientists zoom in and out as the brain processes sound

More information: Sean Deoni, Declan Murphy et al., Mapping Infant Brain Myelination with Magnetic Resonance Imaging, Journal of Neuroscience.

Provided by Medical Research Council

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Steering the filaments of the developing brain

11 hours ago

During brain development, nerve fibers grow and extend to form brain circuits. This growth is guided by molecular cues (Fig. 1), but exactly how these cues guide axon extension has been unclear. Takuro Tojima ...

Do we really only use 10% of our brain?

12 hours ago

As the new film Lucy, starring Scarlett Johansson and Morgan Freeman is set to be released in the cinemas this week, I feel I should attempt to dispel the unfounded premise of the film – that we only use 10% of our brains ...

Birthday matters for wiring-up the brain's vision centers

Jul 31, 2014

Researchers at the University of California, San Diego School of Medicine have evidence suggesting that neurons in the developing brains of mice are guided by a simple but elegant birth order rule that allows them to find ...

User comments : 0