Biologists' favorite worm gets viruses

Jan 25, 2011
Scientists have discovered that C. elegans, a microscopic worm biologists have used in the lab to identify important biological phenomena, suffers from natural viral infections. This may mean that C. elegans can help scientists learn more about how hosts and viruses interact. Credit: Marie-Anne Felix, the Monod Institute

A workhorse of modern biology is sick, and scientists couldn't be happier.

Researchers at Washington University School of Medicine in St. Louis, the Jacques Monod Institute in France and Cambridge University have found that the nematode C. elegans, a millimeter-long worm used extensively for decades to study many aspects of biology, gets naturally occurring .

The discovery means C. elegans is likely to help scientists study the way viruses and their hosts interact.

"We can easily disable any of C. elegans' genes, confront the worm with a virus and watch to see if this makes the infection worse, better or has no effect," says David Wang, PhD. "If it changes the worm's response to infection, we will look to see if similar genes are present in humans and other mammals."

Wang notes that several fundamental aspects of human biology, including the ability of cells to self-destruct to prevent cancer, and , an important process for regulating how genes are used to make proteins, were first identified in C. elegans and later affirmed to be present in humans.

The findings appear online in PLoS Biology.

Marie-Anne Felix, PhD, a researcher who studies nematodes at the Monod Institute, began the study by gathering C. elegans from rotting fruit in French orchards. Felix noted that some of her sample appeared to be sick. Treatment with antibiotics failed to cure them.

Felix then repeated a classic biology experiment that led to the discovery of viruses.

"She ground up the sick worms, passed them through a filter fine enough to remove any bacterial or parasitic infectious agents, and exposed a new batch of worms to the ground-up remains of the first batch," Wang says. "When the new batch got sick, she knew that a viral infection was likely to be present."

Wang, associate professor of pathology and immunology and of , specializes in the identification of novel viruses. He found the worms had been suffering infections from two viruses related to nodaviruses, a class of viruses previously found to infect insects and fish. Nodaviruses are not currently known to infect humans. Tests showed one of the new viruses can infect the strain of C. elegans most commonly used in research.

"Model organisms are essential to important steps forward in biology, and we're eager to see what C. elegans can teach us about the way hosts and viruses interact," Wang says.

Explore further: For cells, internal stress leads to unique shapes

More information: Felix M-A, Ashe A, Piffaretti J, Wu G, Nuez I, Belicard T, Jiang Y, Zhao G, Franz CJ, Goldstein LD, Sanroman M, Miska EA, Wang D. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biology, January 25, 2011. doi:10.1371/journal.pbio.1000586

Related Stories

Genetic research shows degeneration in ageing worm

May 28, 2010

Genetic research focusing on the soil nematode C. elegans has generated fundamental new insights into the way in which these tiny worms age. During the ageing process, the activity of the worm's genes gradually ...

Recommended for you

For cells, internal stress leads to unique shapes

18 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

19 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

21 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...