Binary planetesimals

Jan 28, 2011
An artist's rendering of the binary asteroid 90 Antiope, located in the outer part of the main asteroid belt between Mars and Jupiter. New research indicates that binary planetesimals in a developing, young planetary disk could significantly influence its development. Credit: Copyright European Southern Observatory

(PhysOrg.com) -- In fewer than ten million years, the material in the disk around a young star will either be accreted on to its star, dispersed into the interstellar medium, or converted into planets or smaller solid bodies. As the material in the disk orbits the star, each particle has a velocity that depends on its distance from the star.

Current models for the evolution of pre-planetary disks invoke three basic processes. In the first two, bodies interact with each other to exchange energy and alter their velocities and distances from the star. In the third, small orbiting clumps of coagulated dust grains stick to one another and grow into larger bodies, called planetesimals.

The solid bodies often sculpt gaps, or cavities, in the disk, by accreting more material; some grow into planets. Eventually winds from the star will sweep away the remaining disk material. Each of these processes is influenced by many factors that astronomers are working hard to understand.

In a new paper, CfA Hagai Perets studies the role of binary planetesimals -- clumps that orbit each other and jointly mature via the three basic processes. Do such binary planetesimals even exist? And how might they influence the development of the planetary system? For example, when two bodies interact the outcome is a relatively straightforward prediction, but a third body in the mix can make the interaction notoriously complex, even chaotic, for example possibly leading to one of the three bodies being ejected from the system.

Perets introduces a set of relatively simple theoretical arguments to illustrate how binary planetesimals might make a very big difference to the final planetary system. He first notes the existence in our today of many such binaries, and argues that some of them could be remnants from earlier times. He shows that the role of binaries, ignored in most previous studies, is not only not negligible - it potentially plays an important role in the evolution of the and should not be ignored in future simulations and modeling.

Explore further: Image: NGC 6872 in the constellation of Pavo

Related Stories

Planetary systems can form around binary stars

Jan 10, 2006

New theoretical work shows that gas-giant planet formation can occur around binary stars in much the same way that it occurs around single stars like the Sun. The work is presented today by Dr. Alan Boss of ...

Hubble Reveals Two Dust Disks Around Nearby Star

Jun 27, 2006

NASA's Hubble Space Telescope has revealed two dust disks circling the nearby star Beta Pictoris. The images confirm a decade of scientific speculation that a warp in the young star's dust disk may actually ...

Dirty stars make good solar system hosts (w/ Video)

Oct 06, 2009

Some stars are lonely behemoths, with no surrounding planets or asteroids, while others sport a skirt of attendant planetary bodies. New research published this week in The Astrophysical Journal Letters explains why the co ...

Simulation Tracks Planetary Evolution

Mar 30, 2006

Two British astronomers have constructed a computer simulation that tracks how giant protoplanets tend to form and migrate inward toward their central star.

Astronomers discover pair of solar systems in the making

Jul 01, 2009

Two University of Hawai'i at Mānoa astronomers have found a binary star-disk system in which each star is surrounded by the kind of dust disk that is frequently the precursor of a planetary system. Doctoral ...

Recommended for you

Image: NGC 6872 in the constellation of Pavo

13 hours ago

This picture, taken by the NASA/ESA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2), shows a galaxy known as NGC 6872 in the constellation of Pavo (The Peacock). Its unusual shape is caused ...

Measuring the proper motion of a galaxy

14 hours ago

The motion of a star relative to us can be determined by measuring two quantities, radial motion and proper motion. Radial motion is the motion of a star along our line of sight. That is, motion directly ...

Gravitational waves according to Planck

Sep 22, 2014

Scientists of the Planck collaboration, and in particular the Trieste team, have conducted a series of in-depth checks on the discovery recently publicized by the Antarctic Observatory, which announced last ...

Infant solar system shows signs of windy weather

Sep 22, 2014

Astronomers using the Atacama Large Millimeter/submillimeter Array (ALMA) have observed what may be the first-ever signs of windy weather around a T Tauri star, an infant analog of our own Sun. This may help ...

Finding hints of gravitational waves in the stars

Sep 22, 2014

Scientists have shown how gravitational waves—invisible ripples in the fabric of space and time that propagate through the universe—might be "seen" by looking at the stars. The new model proposes that ...

How gamma ray telescopes work

Sep 22, 2014

Yesterday I talked about the detection of gamma ray bursts, intense blasts of gamma rays that occasionally appear in distant galaxies. Gamma ray bursts were only detected when gamma ray satellites were put ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

BillFox
3 / 5 (10) Jan 28, 2011
*waits for QC to post rambling bs*
omatumr
3 / 5 (2) Jan 31, 2011
The first planetary system observed beyond the solar system was three rocky planets reported by Aleksander Wolszczan and Dale Frail to be orbiting a pulsar ["A planetary system around the millisecond pulsar PSR1257 + 12, Nature, vol. 355, Jan. 9, 1992, pp. 145-147] .