Astronomy without a telescope -- why carbon?

Jan 18, 2011 By Steve Nerlich, Universe Today
The ATGC coding of DNA - it remains unclear whether replication was the first biochemical step on Earth or whether energy producing metabolisers developed this trick further down the track. Credit: NASA (adapted image).

Last week's AWAT Why Water? took the approach of acknowledging that while numerous solvents are available to support alien biochemistries, water is very likely to be the most common biological solvent out there – just on the basis of its sheer abundance. It also has useful chemical features that would be advantageous to alien biochemistries – particularly where its liquid phase occurs in a warmer temperature zone than any other solvent.

We can constrain the number of possible solutes likely to engage in biochemical activity by assuming that life (particularly complex and potentially intelligent life) will need structural components that are chemically stable in solution and can sustain their structural integrity in the face of minor environmental variations, such as changes in temperature, pressure and acidity.

Although DNA is often discussed as a core component of life on , it is conceivable that a self-replicating biochemistry came later. The molecular machinery that supports the breakdown of carbohydrates uses relatively uncomplicated carboxylic acids and phospholipid membranes – although the whole process today is facilitated by complex proteins, which are unlikely to have arisen spontaneously. A current debate exists about whether life originated as replication or metabolism – or whether the two systems were ever separate before joining together in a symbiotic alliance.

If you are wondering why we consider ourselves to be carbon-based organisms - check out the Krebs cycle, the basis of energy production in every cell in our bodies.

In any case, although a variety of small scale biochemistries, with or without , are possible – it seems likely that the structure of organisms of any substantial size will be built using polymers – which are large molecular structures, built up from the joining together of smaller units.

On Earth, we have proteins built from amino acids, DNA built from nucleotides and deoxyribose sugars – as well as various polysaccharides (for example cellulose or glycogen) built from other sugars. With microscopic biochemical machinery capable of building these small units and then linking them together – you can get organisms on the scale of blue whales.

Carbon is extremely versatile at linking together diverse elements – able to form more compounds than any other element we have observed. It is more universally abundant that the next polymeric contender, silicon – and it’s worth considering that on Earth, silicon is atypically 900 times more abundant than carbon – but still ends up having minimal engagement in Earth biochemistry. Boron is also very good at building polymers, but is a relatively rare element in the universe.

It does seem reasonable to assume that if we do meet a macroscopic alien form – with a structural integrity sufficient to enable us to shake hands – it will most likely have a primarily carbon-based structure.

However, in this scenario you are likely to be met with a puzzled query as to why you seek tactile engagement between your respective motile-sensory appendages. Instead, why not offer to replenish each other’s solvents via some Goldilocks-zone heated water with an interesting nitrogen, oxygen, carbon alkaloid mixed in – something we call coffee.

Explore further: Bright points in Sun's atmosphere mark patterns deep in its interior

add to favorites email to friend print save as pdf

Related Stories

Titan's haze could hold ingredients for life

Oct 08, 2010

Simulating possible chemical processes in the atmosphere of Titan, Saturn's largest moon, a UA-led planetary research team found amino acids and nucleotide bases – the most important ingredients of life ...

Recommended for you

Astronauts to reveal sobering data on asteroid impacts

8 hours ago

This Earth Day, Tuesday, April 22, three former NASA astronauts will present new evidence that our planet has experienced many more large-scale asteroid impacts over the past decade than previously thought… ...

Rosetta instrument commissioning continues

9 hours ago

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

Astronaut salary

9 hours ago

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Red moon at night; stargazer's delight

Apr 16, 2014

Monday night's lunar eclipse proved just as delightful as expected to those able to view it. On the East Coast, cloudy skies may have gotten in the way, but at the National Science Foundation's National Optical ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...