Armchair nanoribbons made into spintronic device

January 25, 2011

In a development that may revolutionize handheld electronics, flat-panel displays, touch panels, electronic ink, and solar cells, as well as drastically reduce their manufacturing costs, physicists in Iran have created a spintronic device based on "armchair" graphene nanoribbons. Spintronic devices are being pursued by the semiconductor and electronics industries because they promise to be smaller, more versatile, and much faster than today's electronics.

As described in the American Institute of Physics journal , nanoribbons such as these could one day replace -- an expensive material for which researchers have been searching for suitable substitutes.

Nanoribbons are carbon nanotubes that have been "unzipped" using a room-temperature chemical process to produce ultrathin, flat ribbons of straight-edged sheets of graphene. Finite, narrow strips of graphene are cut out from a two-dimensional sheet of graphene to create the nanoribbons. And depending on how the ribbon is cut out, it results in either an "armchair" or a zigzag edge. An armchair ribbon can be thought of as essentially an unrolled zigzag nanotube.

"We proposed an electronic spin-filter device using nonmagnetic materials. Our system, which is an all-carbon device, passes only one type of spin current," says Alireza Saffarzadeh, an associate professor in the Department of Physics at Payame Noor University. This property is due to the finite-size effect and geometry of the zigzag-edge graphene nanoribbons, Saffarzadeh explains.

"By applying a gate voltage, the type of spin current can be switched from spin-up to spin-down or vice versa," Saffarzadeh says. "For this reason, the system acts as a spin switch. And these properties are useful in spintronic applications, such as magnetic ."

Saffarzadeh and colleague Roohala Farghadan, a Ph.D. student in Tarbiat Modares University's Department of Physics, found that nanoribbons are good candidates for electronic and spintronic devices due to high carrier mobility, long spin-relaxation times and lengths, and spin-filtering abilities.

Explore further: Spintronic transistor is developed

More information: The article, "A spin-filter device based on armchair graphene nanoribbons," by A. Saffarazadeh and R. Farghadan appears in the journal Applied Physics Letters. See:

Related Stories

Spintronic transistor is developed

October 23, 2005

Researcher Christian Schoenenberger and colleagues at the University of Basel, Switzerland, developed a carbon nanotube transistor, opening a promising avenue toward the introduction of spin-based devices into computer chips, ...

Rice researchers unzip the future

April 15, 2009

Scientists at Rice University have found a simple way to create basic elements for aircraft, flat-screen TVs, electronics and other products that incorporate sheets of tough, electrically conductive material.

Can graphene nanoribbons replace silicon?

February 18, 2010

( -- "Graphene has been the subject of intense focus and research for a few years now," Philip Kim tells "There are researchers that feel that it is possible that graphene could replace silicon as ...

The noise about graphene

October 15, 2010

( -- In last week’s announcement of the Nobel Prize in Physics, the Royal Swedish Academy of Sciences lauded graphene’s "exceptional properties that originate from the remarkable world of quantum physics." ...

Recommended for you

Building a better liposome

October 13, 2015

Using computational modeling, researchers at Carnegie Mellon University, the Colorado School of Mines and the University of California, Davis have come up with a design for a better liposome. Their findings, while theoretical, ...

Dielectric film has refractive index close to air

October 12, 2015

Researchers from North Carolina State University have developed a dielectric film that has optical and electrical properties similar to air, but is strong enough to be incorporated into electronic and photonic devices - making ...

Have your drug nano-delivered via microbubble

October 12, 2015

"Colloidal delivery system" and "nanoparticle" are probably not terms you find yourself using in day-to-day interactions, but for UC's Yoonjee Park, assistant professor in the College of Engineering and Applied Science biomedical ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.