Arctic sea-ice controls the release of mercury

Jan 19, 2011

A French-American team, including researchers from CNRS, IRD, the Universite Paul Sabatier and the Université de Pau, has recently highlighted a new role that sea-ice plays in the mercury cycle in the Arctic. By blocking sunlight, sea-ice could influence the breakdown and transfer into the atmosphere of toxic forms of mercury present in the surface waters of the Arctic Ocean. These results, which suggest that climate plays a key role in the mercury cycle and that the release of mercury into the atmosphere could be accentuated by the melting of Arctic sea-ice, are published in the journal Nature Geoscience.

Mercury (Hg) is the only heavy metal that is essentially found in gaseous form in the atmosphere. Since the industrial revolution, emissions of anthropogenic Hg resulting from the combustion of fossil fuels have exceeded natural emissions. Both anthropogenic emissions and natural emissions (which mainly stem from the oceans and gases released by volcanoes) reach the Polar Regions under the action of atmospheric currents. In this way, fallout from global atmospheric pollution contributes to depositing mercury in Arctic ecosystems, even though these are far away from major anthropogenic emission sources.

In the Arctic atmosphere, elementary mercury is oxidized into a form that deposits easily in the cryosphere (snow, ice). Then, when the ice melts, this oxidized form can in turn be re-mobilized and transformed, via physicochemical and biological processes, into a toxin: methylmercury (CH3Hg). It is this toxic form that is ingested by living organisms. It accumulates throughout the food chain and can reach concentrations one million times higher than those measured in surface waters at the very top of the chain. Over the last two decades, mercury and methylmercury concentration monitoring programs in different regions of the Arctic have been showing contrasting geographic and temporal trends. What are the reasons for these variations? What processes govern the mercury cycle?

To understand these phenomena better, the researchers focused on murre eggs collected in several Arctic and sub-Arctic locations (Gulf of Alaska, Bering Sea and the Chukchi Sea). Situated at the top of the food chain, these sea birds incorporate the mercury contamination present in the chain and are thus an excellent sentinel species for measuring the impact of this pollutant on marine ecosystems. For instance, the quantity of mercury in their eggs provides an accurate reflection of mercury levels in Arctic ecosystems at a given time. More specifically, the team of scientists measured the isotopic signature of Hg in these eggs and noted that it showed significant geographic variations.

The isotopic signature variations of most chemical elements (carbon, nitrogen, etc.) mainly depend on their mass difference (12C, 13C). Surprisingly, mercury isotopes do not follow the same “rule”: its odd isotopes (199Hg, 201Hg) behave differently to its even isotopes (198Hg, 200Hg, etc). This particularity is an extremely rare phenomenon on Earth. For mercury, this anomaly is closely related to sea-ice cover around murre colonies' egg laying sites. Knowing the important role played by light in the photodegradation of methylmercury, the researchers succeeded in establishing how much of this toxin could be destroyed by sunlight, whether in the presence or in the absence of sea-ice. In this way, they determined that the presence of sea-ice prevents both the photochemical breakdown of methylmercury and that it limits exchanges of mercury between the Arctic Ocean and the atmosphere.

These results suggest that climate plays a key role in the mercury cycle. Accelerated melting of over the coming decades will therefore influence the biogeochemical cycle of this pollutant in a significant manner. Analysis of at the isotopic scale now opens new research avenues to better understand the dynamics of this priority pollutant and its impact on the environment.

Explore further: Scientists monitoring Hawaii lava undertake risks

More information: Methylmercury photodegradation influenced by sea-ice cover in Arctic marine ecosystems. Point, D., et al.Nature Geoscience. doi:10.1038/NGEO1049 . Published on-line on the 16th January 2011.

add to favorites email to friend print save as pdf

Related Stories

Study: Mercury can travel long distances

Dec 12, 2005

University of Washington scientists say they may have determined why mercury in the atmosphere might be washed out more easily than earlier believed.

Recommended for you

First eyewitness accounts of mystery volcanic eruption

2 hours ago

New light has been shed on one of the biggest volcanic eruptions in the last 500 years—the so-called 'Unknown eruption'—thanks to an unusual collaboration between a historian and a team of earth scientists at the University ...

Scientists monitoring Hawaii lava undertake risks

10 hours ago

New photos from the U.S. Geological Survey's Hawaiian Volcano Observatory give a glimpse into the hazardous work scientists undertake to monitor lava that's threatening to cross a major highway.

NASA sees Odile soaking Mexico and southwestern US

21 hours ago

Tropical Storm Odile continues to spread moisture and generate strong thunderstorms with heavy rainfall over northern Mexico's mainland and the Baja California as well as the southwestern U.S. NASA's Tropical ...

NASA sees Tropical Storm Polo intensifying

21 hours ago

Tropical storm warnings now issued for a portion of the Southwestern coast of Mexico as Polo continues to strengthen. Infrared imagery from NASA's Aqua satellite showed powerful thunderstorms around the center ...

User comments : 0