Antibiotic resistance is not just genetic

Jan 05, 2011

Genetic resistance to antibiotics is not the only trick bacteria use to resist eradication– they also have a second defence strategy known as persistence that can kick in.

Researchers reporting in the Journal of Medical Microbiology have now demonstrated for the first time that interplay occurs between the two mechanisms to aid bacterial survival. The findings could lead to novel, effective approaches to treat multi-drug resistant (MDR) infections.

'Persister' bacterial cells are temporarily hyper-resistant to all at once.
They are able to survive (normally) lethal levels of antibiotics without being genetically resistant to the drug. These cells are a significant cause of yet the mechanism behind the persistence phenomenon is still unclear.

Scientists from Centre of Microbial and Plant Genetics, at the Katholieke Universiteit Leuven, Belgium found that the number of persister cells isolated from Pseudomonas aeruginosa infections decreases when the bacterial population shows genetic resistance to the antibiotic fosfomycin.

P. aeruginosa is an opportunistic human pathogen and a significant cause of hospital-acquired infections. It can cause fatal infections in people suffering from cystic fibrosis. The bacterium is notorious for its ability to develop resistance against commonly-used antibiotics and treatment failure is common.

Professor Jan Michiels who led the study explained that persister cells are a major contributor to treatment failure. "Persister cells are produced in low numbers, but nevertheless make it almost impossible to completely remove the bug from the patient. As a result, eradication of infections through antibiotic treatment usually takes a long time," he said. "Our work shows that antibiotic treatment may also influence the number of persisters formed."

Co-administration therapies are being developed to treat MDR infections, in which drugs targeting non-essential cellular functions are combined with antibiotics. Professor Michiels explained that targeting persistence is an attractive option. "Ideally both susceptible and persistent cells would be targeted in a single therapy, but firstly we need to understand more about the interplay between and persistence to avoid stimulating one or the other. Unravelling the mechanism behind bacterial persistence is really important to enable us to optimise treatments of chronic bacterial infections."

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

Provided by Society for General Microbiology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Research promising for cystic fibrosis

Mar 18, 2008

New University of Toronto research holds promise for developing innovative therapies against cystic fibrosis and may also serve as a model for future therapies against the HIV virus.

Disinfectants may promote growth of superbugs

Dec 27, 2009

Using disinfectants could cause bacteria to become resistant to antibiotics as well as the disinfectant itself, according to research published in the January issue of Microbiology. The findings could have important implic ...

Recommended for you

Japanese scientist resigns over stem cell scandal

7 hours ago

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

21 hours ago

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.