Yeast 'rewired' to mate when starving

Dec 17, 2010 by Lin Edwards report

(PhysOrg.com) -- New research has found that the mating habits of the dairy yeast depends on the levels of nutrients available as well as the availability of cells of the opposite "sex."

The researchers, led by Lauren N. Booth of the University of California, San Francisco, carried out a series of experiments on three species of yeast: the baker's yeast (), dairy yeast (Kluyveromyces lactis) and human pathogen yeast (). All three species have three cell types: the haploids a and α, both of which carry a single set of chromosomes, and the product of their mating, the diploid a/α. They also produce haploid spores which are formed when the diploid divides.

The a and α "sexes" mate by fusing together and combining the two sets of chromosomes to form the diploid cell type, which is externally virtually identical to the haploids. In this condition all the mating are suppressed and it no longer secretes mating factors, which are secreted constantly in the haploid .

Each of the cell types has specific genes controlled by specific proteins. In the a cells the genes express a factor "MATa1," and the equivalent in the α cells is MATα2. In the diploid the factors combine to form a complex a1/α2 and this blocks the expression of the four genes involved in mating and the genes specific to the a and α cell types. The new research has discovered that the dairy yeast has evolved a different form of regulation.

In S. cerevisiae diploids the genes specific to the a and α cell types are regulated by the a1/α2 complex, which binds to the DNA near the genes it shuts down. Among the proteins expressed by the genes is an intermediate regulatory protein called RME1. In C. albicans the process is the same but RME1 is not present. In K. lactis RME1 is present and is shut down by the a1/α2 complex, but in this yeast RME1 is the only gene regulated by the complex, and it is RME1 that regulates the expression of the other genes.

The differences in regulation of gene expression might have little effect since regulation of the genes in each case depends on the presence of the a1/α2 complex. RME1 is not just regulated by the complex, however, and is also regulated in response to levels of and is activated in starvation conditions.

This means that in all three species the "decision" to mate depends on there being haploids of the opposite type present and secreting the a or α mating factors, but in K. lactis the nutrient levels also have an influence, so that in starvation conditions mating is more likely. Mating is a necessary step in the production of spores, which can ensure the yeast's survival in hard times.

The researchers said a reorganization in a relatively recent ancestor K. lactis produced the indirect suppression of the mating genes by RME1. The overall logic of haploid specific genes active in the a and α cells and off in the diploid is preserved, but the "rewiring" integrated nutritional signals into the decision.

The paper is published in the journal Nature.

Explore further: Molecular gate that could keep cancer cells locked up

More information: Intercalation of a new tier of transcription regulation into an ancient circuit, Lauren N. Booth, et al., Nature 468, 959–963 (16 December 2010) doi:10.1038/nature09560

Related Stories

Scientists discover role for dueling RNAs

Nov 16, 2006

Researchers have found that a class of RNA molecules, previously thought to have no function, may in fact protect sex cells from self-destructing. These findings will be published in the November 17 issue of the journal Cell.

How stem cells make skin

Sep 13, 2009

Stem cells have a unique ability: when they divide, they can either give rise to more stem cells, or to a variety of specialised cell types. In both mice and humans, a layer of cells at the base of the skin ...

Recommended for you

Molecular gate that could keep cancer cells locked up

19 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

22 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0