Making wafers faster by making features smaller

Dec 14, 2010
False-color images of the tin and lithium plasma plumes in EUV emission through a 7 to 15 nm filter, obtained under identical conditions. Credit: American Institute of Physics

The manufacturing of semiconductor wafers used in all types of electronics involves etching small features onto a wafer with lasers, a process that is ultimately limited by the wavelength of the light itself. The semiconductor industry is rapidly approaching this fundamental limit for increasing the speed of the microchip. The development of a new intense 13.5-nm (extreme ultraviolet or EUV) light source will resolve this issue by reducing the feature size by an order of magnitude or so, according to Purdue researchers in the Journal of Applied Physics.

One way to generate this wavelength of light is to bombard tin (Sn) and lithium (Li) targets with laser beams to create an intensely bright plasma; Sn and Li are good candidates because their plasmas emit efficiently in the 13.5 nm region, says Purdue graduate student Ryan Coons. He and his colleagues used spectroscopy and a Faraday cup to analyze the emission features and debris produced in laser-produced tin and lithium plasmas, and others in his group modeled their physical processes.

In a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and Li plasmas, the group's results show that Sn plasmas produce twice as much emission as that of Li. However, the kinetic energy of Sn ions is considerably higher, though with a lower flux. More work is needed to perfect the development of this technology.

Explore further: New insights found in black hole collisions

More information: The article, "Analysis of atomic and ion debris features of laser-produced Sn and Li plasmas" by Ryan W. Coons, Sivanandan S. Harilal, David D. Campos, and Ahmed Hassanein appears in Journal of Applied Physics. See: link.aip.org/link/japiau/v108/i6/p063306/s1

Related Stories

Nuclear fusion research key to advancing computer chips

Aug 18, 2009

(PhysOrg.com) -- Researchers are adapting the same methods used in fusion-energy research to create extremely thin plasma beams for a new class of "nanolithography" required to make future computer chips.

Scientists Shed 'Light' on Semiconductor Quandry

Jul 14, 2009

(PhysOrg.com) -- UC San Diego scientists are using laser plasma-produced light sources to explore performance improvements of critical inspection tools for the semiconductor industry, which ultimately will ...

Significant Achievements in Intel's EUV Lithography Program

Aug 02, 2004

Intel Corporation today revealed two significant milestones in the development of extreme-ultraviolet (EUV) lithography, a technology for making future microprocessors. The company installed the world's first commercial EUV li ...

A blast to chase

Feb 24, 2006

Possibly similar to what our own Milky Way looks like, Messier 100 is a grand design spiral galaxy that presents an intricate structure, with a bright core and two prominent arms, showing numerous young and ...

Recommended for you

New insights found in black hole collisions

Mar 27, 2015

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

Mar 27, 2015

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

Fluctuation X-ray scattering

Mar 26, 2015

In biology, materials science and the energy sciences, structural information provides important insights into the understanding of matter. The link between a structure and its properties can suggest new ...

Hydrodynamics approaches to granular matter

Mar 26, 2015

Sand, rocks, grains, salt or sugar are what physicists call granular media. A better understanding of granular media is important - particularly when mixed with water and air, as it forms the foundations of houses and off-shore ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Sonhouse
not rated yet Dec 14, 2010
What is the overall efficiency of H2 production here? The piece says this bacteria produces ten times the amount of its competitor but is that close to the best solar/hybrid hydrolysis achieved now? If not, is the idea they can make it ten times more efficient again, and would that compete with other methods of H2 production?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.