Vibrating nanorods measure thin films for microcircuits

Dec 10, 2010 By Bill Steele
Schematic illustration of the measurement of in-plane and out-of-plane vibrational modes of a silicon cantilever. Modulated blue laser excites the NEMS structure and laser interferometry monitors the cantilever motion. Spectral characteristics of the in-plane (blue) and out-of plane (red) modes change when a thin-film coating, shown in green, is applied. Rob Ilic/Craighead Group

(PhysOrg.com) -- A key step in many nanofabrication processes is to create thin films, sometimes only one molecule thick, by a method known as atomic layer deposition. Researchers at Cornell and Tel Aviv University have developed a new tool for nanofabricators to test the physical properties of such films.

Ultrathin films are increasingly important in constructing microcircuits. Their physical characteristics often determine their electronic behavior as well as their resistance to wear.

The researchers have shown that tiny resonant cantilevers -- silicon rods anchored at one end, like a tiny diving board -- can determine the density of a film and its Young's modulus, a measure of resistance to bending. The method offers several advantages over other methods of measuring these characteristics of , the researchers said, and can be used by any researchers with access to nanofabrication capabilities comparable to those at the Cornell Facility.

The work was reported in the Aug. 15 issue of the by Cornell research associate Rob Ilic, Slava Krylov, senior lecturer at Tel Aviv University and former visiting professor at Cornell, and Harold Craighead, the C.W. Lake Jr. Professor of Engineering at Cornell.

Scanning electron micrographs of silicon cantilevers 8 microns long and 75, 300 and 800 nanometers wide. Rob Ilic/Craighead Group

Cornell researchers have previously used tiny vibrating cantilevers just a few nanometers (billionths of a meter) thick to detect the mass of objects as small as a virus. Just as a thick guitar string vibrates at a lower note than a thinner one, adding mass to a vibrating rod changes its frequency of vibration. Coating the rod with a thin film adds detectable mass, and from the mass and thickness of the film, density can be determined.

The film also changes the cantilever's resistance to bending. To separate out this characteristic, the researchers compared in-plane (side to side) and out-of-plane (up and down) vibrations. The resistance to bending in different directions is noticeably different when the vibrating rod is wide and thin. When the cross-section of the rod is square, there is no difference between up and down and side-to-side movement.

To test their idea, the researchers fabricated a variety of cantilevers six to 10 microns (millionths of a meter) long, 45 nanometers thick and with widths varying from 45 nanometers to 1 micron. In various experiments, they applied films of aluminum, aluminum nitride and hafnium from 21.2 to 21.5 nanometers thick to the surface of the cantilevers.

A laser beam focused on the base of a supplies energy to set it vibrating, and another laser aimed at the end measures the vibration. Like a tuning fork, each rod has a resonant frequency at which it vibrates, and that depends on the dimensions and physical characteristics of the device. Comparing the resonant frequency and some of its harmonics before and after a film was applied enabled the researchers to calculate the density and Young's modulus of the film.

Over many experiments, the calculations agreed well with theoretical predictions and characteristics of films measured by other methods. Some aspects of the method of fabricating the nanocantilevers could affect the results, the researchers found, but they said accuracy could be improved.

The work was supported by the Defense Advanced Projects Research Administration, the National Science Foundation and the state of New York.

Explore further: Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch

Related Stories

NIST develops test method for key micromechanical property

Jan 09, 2008

Engineers and researchers designing and building new microelectromechanical systems (MEMS) can benefit from a new test method developed at the National Institute of Standards and Technology to measure a key mechanical property ...

Sensitive nano oscillator can detect pathogens

Mar 11, 2010

(PhysOrg.com) -- By watching how energy moves across a tiny device akin to a springing diving board, Cornell researchers are a step closer to creating extraordinarily tiny sensors that can instantly recognize ...

Lighting the Way to Better Nanoscale Films

Aug 30, 2004

Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may ...

Taking the Stress Out of Magnetic Field Detection

Jan 28, 2009

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology have discovered that a carefully built magnetic sandwich that interleaves layers of a magnetic alloy with a few nanometers ...

Recommended for you

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

Making quantum dots glow brighter

Sep 16, 2014

Researchers from the University of Alabama in Huntsville and the University of Oklahoma have found a new way to control the properties of quantum dots, those tiny chunks of semiconductor material that glow ...

The future face of molecular electronics

Sep 16, 2014

The emerging field of molecular electronics could take our definition of portable to the next level, enabling the construction of tiny circuits from molecular components. In these highly efficient devices, ...

Study sheds new light on why batteries go bad

Sep 14, 2014

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers ...

User comments : 0