Study validates Type 1 diabetes computer model's predictive success through lab testing

Dec 09, 2010

A La Jolla Institute team, led by leading type 1 diabetes researcher Matthias von Herrath, M.D., has demonstrated the effectiveness of a recently developed computer model in predicting key information about nasal insulin treatment regimens in type 1 (juvenile) diabetes. Development of the software, the Type 1 Diabetes PhysioLab Platform, was funded through the peer-reviewed grant program of the American Diabetes Association.

The findings, which also showed the platform's ability to predict critical molecular "biomarkers," were published in the December issue of the scientific journal Diabetes, and further validate the importance of the new model as a valuable research tool in type 1 diabetes. The software is designed to enable researchers to rapidly streamline laboratory research through the evaluation of alternative scenarios for therapeutic strategies that show the most promise for working in humans.

"Since laboratory studies can cost hundreds of thousands of dollars, and early stage human clinical trials can cost $10 million dollars or more, predicting the right conditions to try is important," said Dr. von Herrath, director of the Type 1 Diabetes Research Center at the La Jolla Institute for Allergy & Immunology, where the studies were conducted.

"We've found that using this in silico (computer analysis) prediction platform can quicken the pace and effectiveness of type 1 diabetes research," he continued. "By allowing us to pre-test our theories in computer models, we can ensure that the more time-intensive and costly process of laboratory testing is focused on the most promising therapeutic strategies, with the greatest chance of success."

The platform, developed by Entelos Inc., a life sciences company specializing in predictive technologies, has previously been shown to successfully predict various data from published type 1 diabetes experiments. Dr. von Herrath's team used a different approach to test the model, asking it to predict the outcome of a hypothetical experiment on nasal insulin dosing frequency in animal models that had not yet been performed. The prediction was then tested in the laboratory, where its results were confirmed.

In addition, he said, the model was able to accurately identify the particular time frame at which key type 1 diabetes "biomarkers" kicked in. Biomarkers are specific cell types or proteins that tell researchers at what point a therapeutic option is working or when it is time to start treatment. In the case of the La Jolla Institute study, the model successfully predicted the onset of biomarkers indicating beta cell protection in the NOD mouse.

"The model accurately predicted that implementing a low frequency nasal insulin dosing regimen in animal models was more beneficial in controlling type 1 diabetes than a high frequency regimen," said Dr. von Herrath, noting that the software's prediction of the biomarkers was key in this process. "These results confirmed our hypotheses on the benefits of low-frequency nasal insulin dosing. But even more importantly, the advantage of applying computer modeling in optimizing the therapeutic efficacy of nasal insulin immunotherapy was confirmed."

The results were reported in the paper "Virtual Optimization of Nasal Insulin Therapy Predicts Immunization Frequency To Be Crucial for Diabetes Protection." Dr. von Herrath was senior author on the paper and La Jolla Institute scientist Georgia Fousteri, Ph.D., and Jason Chan, Ph.D., from Entelos' R&D group, were first co-authors.

The Type 1 Diabetes PhysioLab® Platform is a large-scale mathematical model of disease pathogenesis based on non-obese diabetic (NOD) mice. The platform was developed with input from an independent scientific team of leading type 1 diabetes experts. The research support group of the American Diabetes Association funded the work of the software's development to provide a new scientific tool for enhancing the speed and effectiveness of type 1 diabetes research.

More than 400,000 children worldwide suffer from type 1 diabetes, a chronic disease that can lead to severe complications, such as blindness, cardiovascular disease, renal disease, coma or even death.

The platform, developed over two years, simulates autoimmune processes and subsequent destruction of pancreatic beta cells from birth through frank diabetes onset (hyperglycemia). The destruction of insulin-producing beta cells in the pancreas is the underlying cause of type 1 .

Specifically, Dr. von Herrath's team employed the model to investigate the possible mechanisms underlying the effectiveness of nasal insulin therapy, using the B: 9-23 peptide. "The experimental aim was to evaluate the impact of dose, frequency of administration and age at treatment on key molecular mechanisms and optimal therapeutic outcome," he said.

Using parameters input by the scientific team, the model accurately predicted that less frequent doses of nasal insulin, started at an early disease stage, would protect more effectively against beta cell destruction than higher frequency doses in NOD mice.

Dr. von Herrath added that the positive results add credence to the idea of creating computer models for analyzing therapeutic interventions in human disease. "These results support the development and application of humanized platforms for the design of clinical trials," he said.

Explore further: Scientists discover gene controlling muscle fate

Provided by La Jolla Institute for Allergy and Immunology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Scientist discover important new player in diabetes onset

Jun 07, 2010

If you think of diabetes onset like an elaborate molecular drama, then a research team led by a La Jolla Institute scientist has unmasked a previously unknown cellular player, which is critical to proper insulin secretion. ...

Compounds that trigger beta cell replication identified

Feb 25, 2009

Researchers at the Genomics Institute of the Novartis Research Foundation (GNF) have identified a set of compounds that can trigger the proliferation of insulin-producing cells in the pancreas, using sophisticated high-throughput ...

Gene therapy reverses type 1 diabetes in mice

Jun 21, 2010

Researchers have developed an experimental cure for Type 1 diabetes, a disease that affects about one in every 400 to 600 children and adolescents. They will present their results in a mouse model of Type 1 diabetes on Sunday ...

Diabetic potential to create own insulin

Jun 14, 2010

Researchers from the Peninsula Medical School, working in collaboration with colleagues from Glasgow Royal Infirmary and the University of Brighton, have used a unique collection of pancreas specimens taken from patients ...

Stem cell research uncovers mechanism for type 2 diabetes

Feb 12, 2009

Taking clues from their stem cell research, investigators at the University of California San Diego (UC San Diego) and Burnham Institute for Medical Research (Burnham) have discovered that a signaling pathway involved in ...

Are diabetes and obesity linked to periodontitis?

Sep 02, 2008

The University of Illinois at Chicago has received a two-year federal grant to continue a study on how periodontitis, an inflammatory disease of the tissues surrounding teeth, is linked to type 2 diabetes and obesity.

Recommended for you

Scientists discover gene controlling muscle fate

10 hours ago

Scientists at the University of New Mexico have moved a step closer to improving medical science through research involving muscle manipulation of fruit flies. They discovered in the flight muscles of Drosophila ...

Study clues to aging bone loss

10 hours ago

In Canada, bone fractures due to osteoporosis affect one in three women and one in five men over their lifetimes, costing the health care system more than $2.3 billion a year.

User comments : 0