Researchers uncover culprits in life-threatening clotting disorder

Dec 03, 2010
An investigation led by Drs. Philip Shaul and Chieko Mineo offers new clues into the mechanisms underlying antiphospholipid syndrome, a potentially life‑threatening condition predisposing people to blood clots. Credit: UT Southwestern Medical Center

Thanks to findings by UT Southwestern Medical Center researchers, individuals with a potentially life-threatening condition predisposing them to blood clots, or thrombosis, might someday receive therapy to prevent the condition.

The findings, available online and in a future issue of The , offer new clues into the mechanisms underlying antiphospholipid syndrome (APS).

"Patients with APS have circulating that cause exaggerated . The longstanding mystery has been how these antibodies initiate the clotting," said Dr. Philip Shaul, professor of pediatrics and senior co-author of the study.

For the study, the researchers first examined the direct actions of APS antibodies on cultured endothelial cells, which line the inside of blood vessels.

They discovered that the thrombosis-inducing antibodies recognize a protein called Beta2-Glycoprotein I on the endothelial cell surface that then interacts with a second protein, apolipoprotein E receptor 2 (apoER2). ApoER2 ultimately inactivates the enzyme that produces the antithrombotic molecule nitric oxide. The decrease in nitric oxide causes both and platelets to bind to the , initiating the thrombosis.

Dr. Shaul said the findings are quite promising because they identify the series of molecular events responsible for the exaggerated thrombosis.

The study also found that in contrast to normal mice, mice genetically engineered to lack apoER2 are completely protected from developing thrombosis when they are given APS antibodies collected from individuals with the syndrome.

"Patients with thrombosis often require lifelong anti-coagulation therapy," he said. "The problem with this approach is that the anti-coagulation can be ineffective, and there are multiple potential serious complications related to bleeding. It makes much more sense to develop new therapies that target the underlying disease mechanism."

Dr. Chieko Mineo, assistant professor of pediatrics and senior co-author of the study, said the findings are particularly important for pregnant women with APS because they are at high risk of miscarriage and preterm birth.

"Even if a woman with APS does carry to term, the infant is often smaller than normal and can suffer from multiple complications," Dr. Mineo said. "Our ongoing studies indicate that the mechanisms we have identified that provoke thrombosis are also operative in APS during pregnancy to adversely affect the health of both the mother and the fetus."

The next step, Dr. Shaul said, is to test in the mouse models three novel therapeutic interventions that are based on the new understanding of APS.

"If they prevent thrombosis or pregnancy complications in the mouse models, clinical trials would of course follow," Dr. Shaul said.

Explore further: Researchers develop novel solutions to fight the obesity gene

Related Stories

Statins may prevent miscarriages

Oct 10, 2008

Hospital for Special Surgery researchers have found that statins may be able to prevent miscarriages in women who are suffering from pregnancy complications caused by antiphospholipid syndrome (APS), according to a study ...

Recommended for you

Team untangles the biological effects of blue light

8 hours ago

Blue light can both set the mood and set in motion important biological responses. Researchers at the University of Pennsylvania's School of Medicine and School of Arts and Sciences have teased apart the ...

Mouse model provides new insight in to preeclampsia

9 hours ago

Worldwide, preeclampsia is a leading cause of maternal deaths and preterm births. This serious pregnancy complication results in extremely high blood pressure and organ damage. The onset of preeclampsia is associated with ...

Scientists unravel the mystery of a rare sweating disorder

9 hours ago

An international research team discovered that mutation of a single gene blocks sweat production, a dangerous condition due to an increased risk of hyperthermia, also known as heatstroke. The gene, ITPR2, controls a basic ...

User comments : 0