UCLA engineers create new transparent electrodes for highly flexible electronics

Dec 20, 2010 By Wileen Wong Kromhout

The development of new electronic applications like thin-film solar panels, wearable displays and non-invasive biomedical devices, which require significant deformation to copy body movements, has heightened the need for transparent, highly flexible electrodes.

Currently, indium-doped (ITO) technology is used for electrodes in LCD displays, solar cells, iPad and smart-phone touch screens, and organic light-emitting diode (OLED) displays for televisions and computer monitors. But ITO can be fragile and toxic, and it is becoming increasingly more expensive to produce.

Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have now developed a new transparent electrode based on silver nanowires (AgNW) that could replace ITO. The new electrode uses low-cost, non-toxic and stable materials and is easy to fabricate. It is produced on a cross-linked, transparent polyacylate substrate, which is cheaper than glass and can be stiff and rigid or flexible and stretchable.

The resulting AgNW/polymer have high transparency, low sheet resistance comparable to ITO, and low surface roughness. They are substantially more compliant than ITO and would be suitable for the fabrication of high-performance and stretchable OLEDs and .

The shape-memory property of the polymer substrate could lead to electronic devices that can be deformed to various stable shapes. The deformation is reversible, causes minimal damage to the devices and can be repeated for many cycles.

Authors of the research are Zhibin Yu, Qingwu Zhang, Lu Li, Qi Chen, Xiaofan Niu, Jun Liu and Qibing Pei. The invention of the new was led by Qibing Pei, who is a professor of materials science and engineering at UCLA Engineering.

Explore further: Demystifying nanocrystal solar cells

More information: This research was recently published in the peer-reviewed journal Advanced Materials and is available online at: onlinelibrary.wiley.com/doi/10… a.201003398/abstract

add to favorites email to friend print save as pdf

Related Stories

Copper Nanowires Enable Bendable Displays, Solar Cells

Jun 01, 2010

(PhysOrg.com) -- A team of Duke University chemists has perfected a simple way to make tiny copper nanowires in quantity. The cheap conductors are small enough to be transparent, making them ideal for thin-film ...

Nanometer Graphene Makes Novel OLEDs Display

Mar 10, 2010

Researchers at Stanford University have successfully developed brand new concept of organic lighting-emitting diodes (OLEDs) with a few nanometer of graphene as transparent conductor. This paved the way for ...

Recommended for you

Demystifying nanocrystal solar cells

Jan 28, 2015

ETH researchers have developed a comprehensive model to explain how electrons flow inside new types of solar cells made of tiny crystals. The model allows for a better understanding of such cells and may ...

Researchers use oxides to flip graphene conductivity

Jan 26, 2015

Graphene, a one-atom thick lattice of carbon atoms, is often touted as a revolutionary material that will take the place of silicon at the heart of electronics. The unmatched speed at which it can move electrons, ...

Researchers make magnetic graphene

Jan 26, 2015

Graphene, a one-atom thick sheet of carbon atoms arranged in a hexagonal lattice, has many desirable properties. Magnetism alas is not one of them. Magnetism can be induced in graphene by doping it with magnetic ...

The latest fashion: Graphene edges can be tailor-made

Jan 23, 2015

Theoretical physicists at Rice University are living on the edge as they study the astounding properties of graphene. In a new study, they figure out how researchers can fracture graphene nanoribbons to get ...

Nanotechnology changes behavior of materials

Jan 23, 2015

One of the reasons solar cells are not used more widely is cost—the materials used to make them most efficient are expensive. Engineers are exploring ways to print solar cells from inks, but the devices ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.