UCLA receives DARPA grant to research ultra-low-power, non-volatile logic technologies

Dec 02, 2010

The Defense Advanced Research Projects Agency (DARPA) has awarded the UCLA Henry Samueli School of Engineering and Applied Science an $8.4 million grant for research on a technology known as non-volatile logic, which enables computers and electronic devices to keep their state even while powered off, then start up and run complex programs instantaneously.

The research has broad implications across a range of technologies, including , remote sensors, unmanned aerial vehicles and high-performance computing.

UCLA Engineering researchers will conduct studies into the materials, design, fabrication and tools used to develop such technologies.

"The technologies developed in this project will form the basis for a paradigm shift, not only in spintronics, but in the electronics industry as a whole," said Kang Wang, UCLA's Raytheon Professor of Electrical Engineering and joint principal investigator on the project. "The support from DARPA is critical, since it will allow the U.S. to take the lead in developing this new non-volatile electronic technology."

Today's digital electronics rely on complimentary metal-oxide semiconductor (CMOS) , which use an electron's charge to store and transfer information. But as devices and chips have become smaller and more compact, down to the , the fundamental limits of CMOS are being approached. The emerging field of spintronics exploits another aspect of electrons — their spin — to transfer information, taking advantage of ferromagnetic materials, which are inherently magnetic.

Devices using ferromagnetic materials can be non-volatile, maintaining their computational state even when power is removed, and they consume much less power when switched on.

The UCLA researchers are aiming to develop a prototype non-volatile logic circuit, which could lead to the development of new classes of ultra–low-power, high-performance electronics. The research program will explore three technical areas: the behavior of nanoscale magnetic materials; the fabrication and testing of a non-volatile logic circuit; and the development of novel circuits and circuit-design tools.

Researchers at the Western Institute of Nanoelectronics (WIN) and the Center for Functional Engineered Nano-Architectronics (FENA), both housed at UCLA Engineering and both led by Wang, have made several research breakthroughs in materials and design over the past several years. This research will be leveraged into the DARPA-funded non-volatile logic program.

"To achieve the ambitious goals of this program, we are planning to introduce key innovations in terms of both material and device structures. This is an opportunity to study new nano-magnetic physics while developing an exciting technology," said research associate Pedram Khalili, who will be the project manager at UCLA.

The project will be led by UCLA under principal investigators Kang Wang and Alex Khitun, an assistant research engineer, and will involve researchers from UCLA, UC Irvine, Yale University and the University of Massachusetts.

Explore further: Renesas announces SRAM using leading-edge 16 nm FinFET for automotive information systems

Provided by University of California - Los Angeles

3.7 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Recommended for you

As dust clears, what's next for Sony?

9 minutes ago

The Sony hacking attack continues to deliver more dramatic plotlines than any fictional movie, but meanwhile the movie studio must move forward and tackle the next steps in minimizing the mess. Will Sony ...

FAA, industry launch drone safety campaign

3 hours ago

Alarmed by increasing encounters between small drones and manned aircraft, drone industry officials said Monday they are teaming up with the government and model aircraft hobbyists to launch a safety campaign.

It's down to the wire for online shopping

3 hours ago

As the holiday shopping season winds down, FedEx, UPS and online retailers are using the last few days to try to avoid the problems that occurred last year when severe winter weather and a surge in late orders ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.