Tunable plastic thermometers

Dec 15, 2010

(PhysOrg.com) -- Researchers at the Universities of Queensland and New South Wales in Australia have discovered that the ability of a plastic to conduct electricity can be tuned by exposure to an ion beam. Usually plastics conduct electricity so poorly that they are used as the insulation around electrical cables.

However, the team was able to tune the properties of a plastic film using an so that it conducted like the metals used in the electrical wires themselves – and even passed electric current without resistance, materials which do this are known as superconductors. To demonstrate a potential application of this low-cost, robust, and flexible material, the team produced electrical resistance thermometers that meet industrial standards. These results are published in the journal ChemPhysChem.

Ion beam techniques are widely used in the microelectronics industry to tailor the conductivity of semiconductors such as silicon. Attempts have been made to adapt this process to plastic films since the 1980s, with limited success. While the use of argon and krypton ion beams leads to a substantial increase in electrical conductivity, the resulting films remain insulators. The team took an alternative approach, known as ion beam metal-mixing, where a thin film of metal is deposited on a plastic sheet and mixed into the polymer surface using an ion beam. They found that this can produce conducting with metallic or even superconducting properties.

"The process allows us to cover over ten orders of magnitude in electrical resistance and access three distinct regimes of conductivity – insulator, metal and superconductor – with a single material system", says Andrew P. Stephenson, lead author of the paper. This remarkable tunability is achieved by a careful choice of the species used for the ion beam. Stephenson and colleagues start with a polyetheretherketone (PEEK) film coated with a nanoscale layer of tin-antimony alloy, and use a tin ion beam to mix the metal into the plastic surface. This results in an efficient and stable blending of the metal-polymer surface. Furthermore, the conductivity of the resulting material can be tailored precisely by tuning the initial metal film thickness, beam energy and beam dose.

This level of tunability and control in lends itself naturally to the application of resistance temperature measurement. As a demonstration of this potential application, the team tested their films against an industry standard platinum resistance thermometer, obtaining comparable accuracy. As well as being inexpensive, flexible and easily produced with equipment commonly used in the microelectronics industry, these materials are vastly more tolerant of exposure to oxygen compared to standard semiconducting polymers such as polyhexylthiophene or pentacene. "Combined, these advantages may give ion-beam-processed polymer films a bright future in the on-going development of soft materials for plastic electronics applications –a fusion between current and next-generation technology", the researchers say.

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

More information: Andrew P. Stephenson, Ben J. Powell, A Tunable Metal-Organic Resistance Thermometer, ChemPhysChem 2011, 12, No. 1, dx.doi.org/10.1002/cphc.201000762

Related Stories

SSRL Aids Development of Plastic Electronics

May 04, 2006

For close to a decade, researchers have been trying to improve the performance of plastic semiconductors to the level of amorphous silicon—the semiconductor used in low-cost electronics such as photovoltaic ...

Exxon upgrades lithium car batteries

Nov 29, 2007

U.S. researchers say they've developed a plastic film that will make it easier for automakers to use lithium-ion batteries in electric cars and trucks.

Plastic monitors itself

Oct 18, 2010

A new polymer-metal material that has sensory properties makes it possible to produce plastic component parts that monitor themselves. This material can be combined with various others and used in a variety ...

Recommended for you

A greener source of polyester—cork trees

2 hours ago

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

5 hours ago

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

resinoth
not rated yet Dec 15, 2010
so does the ion beam press the metal through the plastic in the form of stochastically-configured wires?
the image at top could use a little more explanation.

More news stories

Breakthrough points to new drugs from nature

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

A greener source of polyester—cork trees

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

Progress in the fight against quantum dissipation

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...