Using terahertz imaging to seek quirks in corks at NJIT

December 8, 2010

As the holidays approach and you're buying wine, ever wonder what's really in a cork? Ask NJIT's John Federici, who has a new use for Terahertz imaging: searching for divots and cracks in wine corks to insure quality.

Using Federici's laboratory, which is devoted to sub-millimeter or Terahertz waves, the project, in collaboration with Amorim & Irmãos S.A. Portugal, the world's largest natural cork producer, and sponsored by QREN, a Portuguese national program for development and innovation, is focused on detecting defects such as cracks and voids in the cork.

THz-imaging is fast proving itself easier and better to use in non-destructive evaluation of objects because it can easily penetrate through most non-metallic materials and it can achieve better resolution than millimeter wave imaging.

"Terahertz imaging is an up-and-coming technology for quality control inspection of materials and components," Federici said. "THz imaging of corks can be simply viewed as analogous to imaging cavities in a tooth. In the case of cork, variations in the structure of the cork – a cavity – lead to contrast in the THz image."

For example, rather than classifying corks based on how they look on the outside, THz imaging will enable classification of corks based on their internal structure. Another advantage is that Terahertz imaging is safer to use on people and products.

The research interests of Federici, a distinguished professor of physics at NJIT, span Terahertz or sub-millimeter wave imaging, spectroscopy, and sub-millimeter wireless communication to ink-jet printed sensors and devices.

Federici has been the lead writer on upwards of 70 publications in scholarly journals and holds 7 patents. His most recent patents emphasize Terahertz synthetic aperture imaging. Federici and his research team have received a U.S. Patent for a Terahertz imaging system and method. Since 1995, Terahertz imaging has grown in importance as new and sophisticated devices and equipment have empowered scientists to understand its potential.

Explore further: American Chemical Society session to focus on T-rays - the next wave in imaging technology

Related Stories

Terahertz-controlling device is built

December 4, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Terahertz imaging goes the distance

April 26, 2007

Terahertz (THz) radiation, or far-infrared light, is potentially very useful for security applications, as it can penetrate clothing and other materials to provide images of concealed weapons, drugs, or other objects. However, ...

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.