Tangling the microscopic ladder

Dec 17, 2010
Atoms usually have one particle per point in a lattice (left). But simulations show conditions where crystals can have multiple particles per lattice point (right).

If a ladder had more than one rung at each step, it would look awkward and would be a bit dangerous to climb. Ladders in the microscopic world were thought to be similar in structure, having only one particle, or rung, in each step in the lattice of a crystal.

But theorists have conceived of structures where multiple could sit at one site and have now simulated how these structures might form and behave for a range of temperatures, pressures and densities.

The result seems to defy the idea that typically keep particles apart. But “nature is not as simple as it appears,” says Patrick Charbonneau, a theorist jointly appointed in the chemistry and physics departments at Duke.

In simulations of cooled, compressed particles, he and his colleagues, Kai Zhang and Bianca Mladek, identified particles that began to mingle and overlap to occupy the same lattice site, rather than move away from each other.

Details of the work appear in the Dec. 10 issue of Physical Review Letters.

“We’re not sure how these overlaping particles would look in nature,” Charbonneau says. But confirmation of the theory could improve scientists’ understanding of exotic matter, like Bose-Einstein condensates and electron bubble crystals, or even the interactions among chain-like molecules, such as certain polymers and dendrimers.

Explore further: What is Nothing?

add to favorites email to friend print save as pdf

Related Stories

Biology rides to computers' aid

Oct 19, 2010

Photonic crystals are exotic materials with the ability to guide light beams through confined spaces and could be vital components of low-power computer chips that use light instead of electricity. Cost-effective ...

Smashing fluids... the physics of flow

Nov 29, 2010

(PhysOrg.com) -- Hit it hard and it will fracture like a solid... but tilt it slowly and it will flow like a fluid. This is the intriguing property of a type of ‘complex fluid’ which has revealed ...

Recommended for you

What is Nothing?

9 hours ago

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

11 hours ago

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0