Space sensor makes bolts smarter

Dec 13, 2010
Intellifast's bolts. Credits: Intellifast

Technology developed for the International Space Station and a Mars rover is helping European auto-parts manufacturers to engineer lighter, stronger and safer drivetrains and axles.

Bolts are the manufacturing world’s unsung heroes. If two parts aren’t welded together, there’s probably a bolt at work and an engineer figuring out how tight it needs to be. Stretch it too much and it might damage the parts. Too loose, it may wiggle.

The permanent mounted transducer system connects the bolted joint connections smoothly with the ultrasonic measurement technology. With the help of a measuring pin, which is integrated in the standard tightening tool, the accurate clamp load can be measured directly during assembly. The precise control given by the system gives precise information about the bolted joint. It makes easy and non-destructive clamp load measuring in tightened condition possible and is an essential inspection tool. Credits: Intellifast

Using space-sensor technology, German company Intellifast has created a bolt with an internal sensor to measure the stress while the bolt is in place.

MST Aerospace, the technology broker of ESA’s Technology Transfer Program, helped Intellifast to work with ZF Lemförder, who builds components for the automotive industry.

Now these bolts with ‘space tech inside’ are being used to make better cars.

The art of tightening bolts

Traditionally, a torque wrench is used to tighten bolts to the required degree. Ultrasound has also been used, shooting sonic waves through bolts. The reflected signals reveal how much they are stretched, but the drawback is you need to use a liquid.

“If you want to do an ultrasound scan on your pregnant wife, you have to put glycerin on her belly,” says Intellifast engineer Frank Scheuch. “If you want to do an ultrasound on a bolt, you have to put a coupling liquid on the bolt and use a handheld sensor.”

But relying on technicians to apply the liquid properly and hold the sensor correctly isn’t good enough for many applications. “If you measure five times with the same person, you get five different readings,” explains Scheuch.

Add in the complexity of accessing bolts in, say, fighter jets or offshore wind turbines and it is clear a more reliable solution is needed.

Space had the answer

Developed for the International Space Station's Material Science Laboratory, Intellifast uses a small ultrasonic sensor mounted in the bolt’s head.

A technician attaches a meter to perform an ultrasound sweep and measure the strain on the bolt. The meter can also be attached to the torque wrench so the bolt’s condition can be tracked even as it is screwed into place.

ESA astronaut Frank De Winne works with Materials Science Laboratory hardware in the International Space Station. Credits: NASA

The same approach was used on NASA’s Mars Pathfinder rover.

With torque wrenches or ultrasound, bolt tightening could be off by as much as 30% of the bolt’s true strength, resulting in over-sized and heavier bolts to ensure they hold.

In space and aviation this can be extremely costly. By precisely measuring a bolt load it can be lighter and still be within a safe margin of error – 3%, according to Scheuch.

Now designers use PMT bolts in their search for lighter cars. “In some cases, we really do have to know the exact clamp load,” says ZF Lemförder engineer Ferry Oude Kotte.

“The really good thing about Intellifast’s solution is we don’t have to alter the connection itself to conduct tests. The result is better, safer cars made possible with bolt-technology developed for space.”

Explore further: MIT team's wireless Vital-Radio could follow breathing, heart rate at home

Related Stories

Modern society made up of all types

Nov 04, 2010

Modern society has an intense interest in classifying people into ‘types’, according to a University of Melbourne Cultural Historian, leading to potentially catastrophic life-changing outcomes for those typed – ...

GPS not working? A shoe radar may help you find your way

Dec 01, 2010

(PhysOrg.com) -- The prevalence of global positioning system (GPS) devices in everything from cars to cell phones has almost made getting lost a thing of the past. But what do you do when your GPS isn’t working? Researchers ...

Fern's hunger-busting properties supported by research

Nov 15, 2010

Professor Roger Lentle, from the Institute of Food, Nutrition and Human Health at the Massey University, led a team that studied how an extract of the mamaku fern influenced stomach activity. Maori traditionally ...

Recommended for you

Team develops faster, higher quality 3-D camera

Apr 24, 2015

When Microsoft released the Kinect for Xbox in November 2010, it transformed the video game industry. The most inexpensive 3-D camera to date, the Kinect bypassed the need for joysticks and controllers by ...

Researchers finding applications for tough spinel ceramic

Apr 24, 2015

Imagine a glass window that's tough like armor, a camera lens that doesn't get scratched in a sand storm, or a smart phone that doesn't break when dropped. Except it's not glass, it's a special ceramic called ...

Classroom acoustics for architects

Apr 23, 2015

The Acoustical Society of America (ASA) has published a free online booklet for architects to aid in the application of ANSI/ASA S12.60-2010/Part 1-American National Standard Acoustical Performance Criteria, Design Requirements, ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

lexington
not rated yet Dec 13, 2010
And *this* is why we go into space people.
ForFreeMinds
1 / 5 (3) Dec 14, 2010
And *this* is why we go into space people.


It's very possible that this technology would have been developed without a space program, e.g. in the quest to build more fuel efficient cars or planes. And it may have been developed by private companies looking to go to space.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.