Scientists identify mechanism responsible for spreading biofilm infections

December 6, 2010

Scientists from the National Institutes of Health have discovered how catheter-related bacterial infection develops and disseminates to become a potentially life-threatening condition. The study, which included research on Staphylococcus epidermidis in mice implanted with catheters, could have important implications for understanding many types of bacterial biofilm infections, including those caused by methicillin-resistant S. aureus (MRSA).

Biofilms are clusters of that almost always are found with healthcare-associated infections (HAIs) involving medical devices such as catheters, pacemakers and prosthetics. Most often biofilms that develop on such devices consist of Staph bacteria. Because biofilms inherently resist antibiotics and immune defenses, treating patients with biofilm-associated infections can be difficult and expensive. An estimated two million HAIs, most of which are associated with biofilms, occur in the United States annually, accounting for about 100,000 deaths.

Although biofilm-related infections result in significant numbers of deaths, scientists still have a limited understanding of how biofilms develop at a molecular level. But now scientists from NIH's National Institute of Allergy and (NIAID) have identified a specific S. epidermidis protein, called phenol-soluble modulin beta (PSM-beta), that biofilms use for multiple purposes: to grow, to detach from an implanted medical device, and to disseminate infection. Antibodies against PSM-beta slowed bacterial spread within the study mice, suggesting that interfering with biofilm development could provide a way to stop the spread of biofilm-associated infection.

Similar proteins also are found in S. aureus, and the research group now plans to study their role in biofilms of MRSA and other bacteria.

Explore further: Turning on cell-cell communication wipes out staph biofilms

More information: R Wang et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. The Journal of Clinical Investigation 121(1): DOI:10.1172/JCI42520 (2011).

Related Stories

Turning on cell-cell communication wipes out staph biofilms

April 30, 2008

University of Iowa researchers have succeeded in wiping out established biofilms of Staphylococcus aureus (staph) by hijacking one of the bacteria's own regulatory systems. Although the discovery is not ready for clinical ...

Bacteria's sticky glue is clue to vaccine says scientist

September 9, 2008

Sticky glue secreted by the bacterium Staphylococcus aureus could be the clue scientists have been searching for to make an effective vaccine against MRSA, medical researchers heard today at the Society for General Microbiology's ...

Genes that make bacteria make up their minds

March 30, 2009

Bacteria are single cell organisms with no nervous system or brain. So how do individual bacterial cells living as part of a complex community called a biofilm "decide" between different physiological processes (such as movement ...

Fighting fungal infections with bacteria

May 1, 2010

A bacterial pathogen can communicate with yeast to block the development of drug-resistant yeast infections, say Irish scientists writing in the May issue of Microbiology. The research could be a step towards new strategies ...

Recommended for you

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.