Scientists generate two energetic electronic states from one photon

December 3, 2010
Depiction of the singlet fission process by which a single absorbed photon creates an excited singlet state that evolves into two triplet states. Electron transfer can then occur from the two triplet states to produce two electrons per absorbed photon in a solar cell device. The molecules shown are DPIBF in a staggered stacking orientation known from its crystal structure.

( -- Researchers from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) and the University of Colorado, Boulder (UCB), have reported the first designed molecular system that produces two triplet states from an excited singlet state of a molecule, with essentially perfect efficiency. The breakthrough could lead to a 35 percent increase in light-harvesting yield in cells for photovoltaics and solar fuels. The experiments, using a process called singlet fission, demonstrated a 200 percent quantum yield for the creation of two triplets of the molecule 1,3-diphenylisobenzofuran (DPIBF) at low temperatures. The research has been published in the Journal of the American Chemical Society.

Under a collaborative research program sponsored by the U.S. Department of Energy, scientists at NREL and the University of Colorado, Boulder report the first designed molecular system that produces two triplet states from an excited singlet state of a molecule (1,3-diphenylisobenzofuran (DPIBF)) with essentially perfect efficiency. The process is called singlet , and the experiments indicated a quantum yield at 77K of 200% for the creation of the two triplets in DPIBF. This means that it may be possible to generate two electron-hole pairs from absorbed single in based on singlet fission, and thus increase its into electricity or solar fuels by 35%.

The research has been published in the in the online ASAP version prior to final publication; the manuscript is entitled “High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran.” The NREL authors are Justin C. Johnson, Sr. Scientist in the Center for Chemical and Materials Science, and Arthur J. Nozik, Sr. Research Fellow; the author at the University of Colorado is Professor Josef Michl, who heads a team of graduate students, post docs, and several other collaborators working on singlet fission.

Singlet fission is the molecular analogue of Multiple Exciton Generation (MEG) in inorganic semiconductor quantum dots; MEG is another process under investigation at NREL whereby two electron-hole pairs, existing as excitons in quantum dots, can be generated from single photons. Thermodynamic modeling indicates that a relatively simple bilayer solar cell incorporating singlet fission (or MEG) could increase the photoconversion yield of an ideal solar cell by more than one-third.

Both the molecular design principles and broader concepts of coupling chromophores into functional networks were key advances that produced 2 electrons per absorbed photon for future use in cells for photovoltaics and solar fuels. The NREL research on singlet fission was sponsored by the Hydrogen Fuel Initiative within DOE’s Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. Professor Michl’s research was funded by the Photovoltaics Program at the DOE Office of Energy Efficiency and Renewable Energy.

Until this recent advance, singlet fission had been known as a somewhat obscure phenomenon occurring primarily in single crystals of tetracene, and most of the investigations occurred more than three decades ago. Recent notions of utilizing singlet fission in light harvesting schemes were developed by Hanna and Nozik (Hanna, M. C.; Nozik, A. J. J. Appl. Phys. 2006, 100, 074510/1), leading to a much more extensive search for appropriate candidate molecules. However, in the absence of detailed mechanistic information about the process itself it was unclear about how to proceed.

The compound DPIBF was identified as a promising candidate by using theory to direct a search for chromophores likely to have a desirable ratio of singlet and triplet excitation energies (Paci, I. et al J. Amer. Chem. Soc. 2006, 128, 16546), the latter of which can be difficult to measure experimentally. Fundamental characterization of the DPIBF molecules isolated in solution (Schwerin, A. et al J. Phys. Chem. A 2010, 114, 1457-1473) was followed up by considerations of how best to connect two DPIBF molecules together (Greyson et al, J. Phys. Chem B ASAP), a necessary step in order to have two triplets form after photoexcitation. Initial attempts to couple the molecules covalently in a chain-like fashion did not produce high singlet fission yields (Michl et al Proc. SPIE 2007, 6656, 66560E1), but more recent theory (Smith et al. Chem. Rev. in press) has led to the discovery that the natural geometry that the molecules adopt while packing into crystals, a sandwich type orientation, might be optimal.

Due to the fact that single bulk crystals can be disadvantageous for optical spectroscopy, thin polycrystalline films of DPIBF were fabricated by subliming the compound in vacuum onto prepared substrates. The details of the process of forming these films are extremely important to the ultimate result because the nanoscale molecular geometry depends on the nature of the microcrystals that form. When done correctly, the films showed strong spectroscopic signatures indicating a high yield of triplets. In order to quantify the yield, ultrafast laser experiments were performed to accurately measure the initial populations of photoexcited singlet states and their time evolution into on a picosecond time scale.

A careful analysis of the data led to yields approaching 200% and an increase in the triplet formation rate of more than ten thousand compared with the isolated DPIBF molecule. Both of these observations support the notion that efficient singlet fission is occurring and that the design criteria set forth may be quite general.

Further work on DPIBF and compounds that absorb a larger fraction of the solar spectrum could lead to a significant future role for singlet fission chromophores in various types of ultraefficient light harvesting devices.

Explore further: Scientists discover how plants disarm the toxic effects of excessive sunlight

More information: Paper online:

Related Stories

Newly solved structure reveals how cells resist oxygen damage

October 15, 2007

The sun’s rays give life, but also take it away. Singlet oxygen, a byproduct of the photosynthetic process by which certain cells convert sunlight into energy, is a highly toxic and reactive substance that tears cells apart. ...

Recommended for you

Feeling the force between sand grains

August 24, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have measured how forces move through 3D granular materials, determining how this important class of materials might pack and behave in processes ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

Funneling fundamental particles

August 24, 2016

Neutrinos are tricky. Although trillions of these harmless, neutral particles pass through us every second, they interact so rarely with matter that, to study them, scientists send a beam of neutrinos to giant detectors. ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 03, 2010
hmmm. couldn't this be done with current technology on silicon? They make quantum dots on silicon, so why not?

Couldn't this also work with nanopillars??

Wouldn't that make nanopillars more useful and highly cost effective? These things can be grown, which also means the base of the pillars need only incorporate regular semiconductor? I mean seriously it's time already for solar to roll out, we all know the technology is now there and it shouldn't take anytime at all to make that final leap into mass production. Every day it seems they are discovering ways to make them more efficient, reliable and durable. So why on earth are we still stuck with the choice of mono or polycrystalline and when buying cells? I've heard labs and articles trumpeting all sorts of discoveries and making every claim under the sun and it seems all to co-incidence that in the end we are all still stuck with the same old crap
not rated yet Dec 03, 2010

Quadrefringence could enhance this technological sector to harness solar corona emissions at far higher compression ratios.
not rated yet Dec 05, 2010
I get it that this could increase the electrical generation significantly, but, wouldn't this technology also "wear out" solar panels that much quicker? There are only so many electrons to be knocked loose.

Of course, making solar panels a consumer item that had to be replaced every 10 years after losing 20 - 25% effectiveness is great on the supply side, but as a consumer it had better be far less expensive than present costs.

Even with higher power panels, we still have to deal with the energy storage issue. Most wet cell batteries are good for about 1800 charge/dischage cycles before they have to be replaced. That gets rather expensive. An integrated battery core replacement/recycling program would certainly help.

I imagine in a few locations some large solar farms could use something similar but in reverse to Duke Energy's Bad Creek project: pump water up to a lake in the mountains at night when they have excess energy and during the day they use that stored energy.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.