Scientists discover brain's inherent ability to focus learning

Dec 08, 2010
Scientists discover brain's inherent ability to focus learning

Medical researchers have found a missing link that explains the interaction between brain state and the neural triggers responsible for learning, potentially opening up new ways of boosting cognitive function in the face of diseases such as Alzheimer's as well as enhancing memory in healthy people.

Much is known about the neural processes that occur during learning but until now it has not been clear why it occurs during certain brain states but not others. Now researchers from the University of Bristol have been able to study, in isolation, the specific which enhances learning and memory.

Acetylcholine is released in the brain during learning and is critical for the acquisition of new memories. Its role is to facilitate the activity of NMDA receptors, proteins that control the strength of connections between nerve cells in the brain.

Currently, the only effective treatment for the symptoms of seen in diseases such as Alzheimer's is through the use of drugs that boost the amount of acetylcholine release and thereby enhance cognitive function.

Describing their findings in the journal Neuron, researchers from Bristol's School of Physiology and Pharmacology have shown that acetylcholine facilitates NMDA receptors by inhibiting the activity of other proteins called SK channels whose normal role is to restrict the activity of NMDA receptors.

This discovery of a role for SK channels provides new insight into the mechanisms underlying learning and memory. SK channels normally act as a barrier to NMDA receptor function, inhibiting changes in the strength of connections between nerve cells and therefore restricting the brain's ability to encode memories. Findings from this latest research show that the SK channel barrier can be removed by the release of acetylcholine in the brain in order to enhance our ability to learn and remember information.

Lead researcher Dr Jack Mellor, from the University of Bristol's Medical School, said: "These findings are not going to revolutionise the treatment of Alzheimer's disease or other forms of cognitive impairment overnight. However, national and international funding bodies have recently made research into aging and dementia a top priority so we expect many more advances in our understanding of the mechanisms underlying and memory in both health and disease."

The team studied the effects of drugs that target acetylcholine receptors and SK channels on the strength of connections between nerve cells in animal brain tissue. They found that changes in connection strength were facilitated by the presence of drugs that activate acetylcholine receptors or block SK channels revealing the link between the two proteins.

Dr Mellor added: "From a therapeutic point of view, this study suggests that certain drugs that act on specific acetylcholine receptors may be highly attractive as potential treatments for cognitive disorders. Currently, the only effective treatments for patients with Alzheimer's disease are drugs that boost the effectiveness of naturally released acetylcholine. We have shown that mimicking the effect of at specific receptors facilitates changes in the strength of connections between . This could potentially be beneficial for patients suffering from Alzheimer's disease or schizophrenia."

Explore further: Study finds potential genetic link between epilepsy and neurodegenerative disorders

More information: Facilitation of Long-Term Potentiation by Muscarinic M1 Receptors is mediated by inhibition of SK channels, by Buchanan KA, Petrovic MM, Chamberlain SEL, Marrion NV & Mellor JR in Neuron.

Related Stories

Mechanism of nicotine's learning effects explored

Apr 04, 2007

While nicotine is highly addictive, researchers have also shown the drug to enhance learning and memory—a property that has launched efforts to develop nicotine-like drugs to treat cognitive deficits in Alzheimer’s and ...

Recommended for you

Molecular basis of age-related memory loss explained

12 hours ago

From telephone numbers to foreign vocabulary, our brains hold a seemingly endless supply of information. However, as we are getting older, our ability to learn and remember new things declines. A team of ...

The neurochemistry of addiction

13 hours ago

We've all heard the term "addictive personality," and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of ...

Study examines blood markers, survival in patients with ALS

Jul 21, 2014

The blood biomarkers serum albumin and creatinine appear to be associated with survival in patients with amyotrophic lateral sclerosis (ALS) and may help define prognosis in patients after they are diagnosed with the fatal ...

User comments : 0