Time ripe to move energy storage idea off drawing board

Dec 01, 2010

Need has caught up with Gerhard Welsch's ideas. Welsch, a professor of materials science and engineering at Case Western Reserve University, began patenting designs for a small, light, powerful and reliable capacitor in 2000.

Now it's just the kind of storage device makers of , computer power supplies, pacemakers and more are seeking to absorb and provide surges of electricity.

Funded with a recent $2.25 million stimulus grant from the U.S. Dept. of Energy's Advanced Research Projects Agency – Energy, or ARPA-E, Welsch will try to make a capacitor ready for market within three years.

Working with him are colleagues Chung-Chiun Liu, professor of chemical engineering, and Frank Merat, professor of computer science and electrical engineering.

ARPA-E is especially interested in the capacitor for hybrids and all-electric cars. A battery, which is a tortoise to this hare, can't supply or absorb energy nearly as fast as a capacitor. To accomplish this, capacitor-enabled power inverters convert the DC electricity from batteries, solar panels or fuel cells to high frequency AC power.

"Electric vehicles need power inverters to convert battery power into higher voltage AC power for their electric motors and to harvest braking power," Welsch said.

His capacitor would provide a 10-fold or higher increase in energy density over current models, yet would be a fraction of the size and weight. And, this model could greatly increase reliability because it can heal leaks of electrical current that plague models now in use.

The keys are the materials and design of the device.

Capacitors, like batteries, have two poles: an anode and a cathode. The anode of Welsch's capacitor is made of a titanium alloy so finely textured that it absorbs almost all the light falling on it. (It looks black.) A large surface area squeezed into a small volume enables high capacitance and a high energy density.

The fine porous structure is laid out on a spine with many branches, further increasing the surface area.

A layer of titanium oxide, made by coating the porous surface with metal oxide, creates a barrier called a dielectric. The dielectric separates positive and negative electrical charges with a certain voltage, which holds the energy. Next comes a layer of an ion-conducting electrolyte followed by a metallic layer, probably of carbon or titanium, which serves as the cathode.

"A capacitor is the equivalent of an electron pressure tank, and the trick is to make the dielectric film (or the wall of the pressure tank), impenetrable to electrons by making it strong and as perfect as possible," Welsch said. "Perfect is not possible, but we can make a material that's close."

Typically, defects in the dielectric allow electrons to leak between the anode and cathode, limiting the energy density or leading to failure of the device. A new synthesis process reduces the size and number of defects in the dielectric formed. When a defect does form, the same forces that store energy in the dielectric draw ions from titanium and the electrolyte, forming a new oxide in or near the defect, sealing the leak.

The spine and branches' design, high surface area, synergistic materials and the instant healing of the dielectric would provide unmatched efficiency and high energy in a small space, the researchers believe.

In addition to demonstrating the capacitor in power supplies for electric cars and LED lighting, Welsch's group aims to show how it can be used in a miniaturized implantable defibrillator. When a sensor detects uncontrolled contraction of heart muscle, a battery will send energy to the , which will in turn jolt the muscle with a pulse of lasting a microsecond, restoring a normal beat.

Explore further: US moves step closer to commercial drone use

Related Stories

High-performance energy storage

Jul 03, 2007

North Carolina State University physicists have recently deduced a way to improve high-energy-density capacitors so that they can store up to seven times as much energy per unit volume than the common capacitor.

Storing a Lightning Bolt in Glass for Portable Power

May 05, 2009

(PhysOrg.com) -- Materials researchers at Penn State University have reported the highest known breakdown strength for a bulk glass ever measured. Breakdown strength, along with dielectric constant, determines ...

New ultracapacitor recharges in under a millisecond

Sep 24, 2010

(PhysOrg.com) -- A new ultracapacitor or electric double-layer capacitor (DLC) design has been announced in the journal Science this week, and could pave the way for smaller and lighter portable electronics device ...

Recommended for you

BioBots bioprinter to complement cutting-edge research

15 minutes ago

A high-resolution desktop 3D bioprinter that builds functional 3D living tissue was shown recently at TechCrunch Disrupt in New York. The machine is significant as a less expensive way for researchers to ...

US moves step closer to commercial drone use

13 hours ago

Drones will take to the skies to inspect crops and infrastructure as US civil aviation authorities moved a step closer Wednesday to allowing their widespread commercial use.

An airflow model to reduce time on the tarmac

17 hours ago

Plans for summer holidays are already taking shape. But before jetting off for some fun in the sun, many travellers will have to cope with long delays on the airport runway.

Sensor detects spoilage of food

21 hours ago

VTT has developed a sensor that detects ethanol in the headspace of a food package. Ethanol is formed as a result of food spoilage. The sensor signal is wirelessly readable, for instance, by a mobile phone. VTT Technical ...

Chest strap heart rate monitor

May 05, 2015

A team of Empa scientists has, together with industrial partners, developed a novel chest strap device for the long-term monitoring of patients with heart and circulatory problems. What is special about the ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet Dec 01, 2010
Numbers? Joules per kg?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.