In Brief: Quantum dot-Induced transparency

December 1, 2010
Quantum dot-Induced transparency
A quantum-dot/metal nanoparticle hybrid structure that could be fabricated lithographically.

Using rigorous and realistic numerical simulations, staff in the Nanophotonics and Theory and Modeling groups at the Argonne National Laboratory have recently demonstrated that a single semiconductor nanocrystal, or quantum dot, can cancel the scattering and absorption by a much larger metal nanostructure.

Placing a quantum dot near a metal is known to strongly modify the rate at which the dot emits light.

If the interaction between the dot and the metal is strong enough, scattering and absorption by the metal can be nearly eliminated at the quantum-dot , according to the simulations.

In Brief: Quantum dot-Induced transparency
Scattering spectra for the structure when the corners of the metal nanoparticles have a curvature of 5 nm (solid squares) and 2 nm (open squares), calculated using the FDTD method. The lines are fits to a coupled-oscillator model.

This occurs even though the dot by itself simply absorbs light, and even though this absorption is nearly 100,000 times smaller than absorption by the metal nanostructure.

Explore further: Coupling of Single Quantum Dots to Smooth Metal Films

More information: X. Wu, S. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express., 18, 23633-23645 (2010).

Related Stories

Coupling of Single Quantum Dots to Smooth Metal Films

July 20, 2009

Scientists at Argonne National Laboratory's CNM Nanophotonics Group have measured how light emission from individual colloidal semiconductor nanocrystals, or quantum dots, is modified when in proximity to smooth metal films. ...

Short-range scattering in quantum dots

October 20, 2010

Chinese researchers, reporting in the Journal of Applied Physics, published by the American Institute of Physics, have described a new breakthrough in understanding the way electrons travel around quantum dots. This might ...

Could light and matter coupling lead to quantum computation?

October 11, 2010

(PhysOrg.com) -- In science, one of the issues of great interest is that of quantum computing, and creating a way to make it possible on a scalable level. This could be achieved by taking advantage of the strong interaction ...

Recommended for you

Room-temp superconductors could be possible

September 29, 2016

Superconductors are the holy grail of energy efficiency. These mind-boggling materials allow electric current to flow freely without resistance. But that generally only happens at temperatures within a few degrees of absolute ...

Researchers make breakthrough in dewetting surfaces

September 29, 2016

How would you like a kitchen surface that cleans itself? Technological advances such as this could be one step closer after a breakthrough by Northumbria University and Nottingham Trent University.

Creating antimatter via lasers?

September 27, 2016

Dramatic advances in laser technologies are enabling novel studies to explore laser-matter interactions at ultrahigh intensity. By focusing high-power laser pulses, electric fields (of orders of magnitude greater than found ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.