In Brief: Quantum dot-Induced transparency

Dec 01, 2010
Quantum dot-Induced transparency
A quantum-dot/metal nanoparticle hybrid structure that could be fabricated lithographically.

Using rigorous and realistic numerical simulations, staff in the Nanophotonics and Theory and Modeling groups at the Argonne National Laboratory have recently demonstrated that a single semiconductor nanocrystal, or quantum dot, can cancel the scattering and absorption by a much larger metal nanostructure.

Placing a quantum dot near a metal is known to strongly modify the rate at which the dot emits light.

If the interaction between the dot and the metal is strong enough, scattering and absorption by the metal can be nearly eliminated at the quantum-dot , according to the simulations.

In Brief: Quantum dot-Induced transparency
Scattering spectra for the structure when the corners of the metal nanoparticles have a curvature of 5 nm (solid squares) and 2 nm (open squares), calculated using the FDTD method. The lines are fits to a coupled-oscillator model.

This occurs even though the dot by itself simply absorbs light, and even though this absorption is nearly 100,000 times smaller than absorption by the metal nanostructure.

Explore further: New technique detects microscopic diabetes-related eye damage

More information: X. Wu, S. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express., 18, 23633-23645 (2010).

add to favorites email to friend print save as pdf

Related Stories

Coupling of Single Quantum Dots to Smooth Metal Films

Jul 20, 2009

Scientists at Argonne National Laboratory's CNM Nanophotonics Group have measured how light emission from individual colloidal semiconductor nanocrystals, or quantum dots, is modified when in proximity to ...

Short-range scattering in quantum dots

Oct 20, 2010

Chinese researchers, reporting in the Journal of Applied Physics, published by the American Institute of Physics, have described a new breakthrough in understanding the way electrons travel around quantum dots. This might ...

Could light and matter coupling lead to quantum computation?

Oct 11, 2010

(PhysOrg.com) -- In science, one of the issues of great interest is that of quantum computing, and creating a way to make it possible on a scalable level. This could be achieved by taking advantage of the strong interaction ...

Recommended for you

Robotics goes micro-scale

Apr 17, 2014

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...