Using rigorous and realistic numerical simulations, staff in the Nanophotonics and Theory and Modeling groups at the Argonne National Laboratory have recently demonstrated that a single semiconductor nanocrystal, or quantum dot, can cancel the scattering and absorption by a much larger metal nanostructure.

Placing a quantum dot near a metal is known to strongly modify the rate at which the dot emits light.

If the interaction between the dot and the metal is strong enough, scattering and absorption by the metal can be nearly eliminated at the quantum-dot resonance frequency, according to the simulations.

This occurs even though the dot by itself simply absorbs light, and even though this absorption is nearly 100,000 times smaller than absorption by the metal nanostructure.

**Explore further:**
Excited-state spectroscopy on a nearly closed quantum dot via charge detection

**More information:**
X. Wu, S. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” *Opt. Express*., 18, 23633-23645 (2010).

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.Sign in to get notified via email when new comments are made.