Physicists grow pleats in two-dimensional curved spaces

December 23, 2010
University of Chicago physicist William Irvine and his colleagues are interested in how the interplay of geometry and light affect the structure of two-dimensional curved spaces, including those of a sphere (shown here), but also domes, waists and barrels. The team has developed methods for finely controlling pleats in these curved spaces, which may be useful in the design of nanoscale materials. (William Irvine

(PhysOrg.com) -- A design feature well known in skirts and trousers has now been identified in curved, two-dimensional crystals. As University of Chicago physicist William Irvine and his colleagues report in this week’s Nature, crystalline arrays of microscopic particles grown on a negatively curved surface can develop linear defects analogous to fabric pleats. The results will facilitate a more general exploration of defects in curved spaces, including potential applications in engineered materials.

The problem of tiling a curved surface with hexagons is familiar from soccer balls and geodesic domes, in which pentagons are added to accommodate the spherical (positive) curvature. Interacting particles that form hexagonal patterns on a plane — known as ‘colloidal ’ — adopt these and other types of topological defects when grown on a sphere.

Irvine, an assistant professor in physics, and colleagues have developed an experimental system that allows them to investigate crystal order on surfaces with spatially varying curvature, both positive and negative. On negatively curved surfaces, they observed two types of defect that hadn’t been seen before: isolated heptagons (analogous to the pentagons on a sphere) and pleats.

The pleats allow a finer control of crystal order with curvature than is possible with isolated point , and may find application in curved structures such as waisted nanotubes (long, thin microscopic cylinders of material that display novel properties), or in materials created by techniques that permit control at the atomic and molecular levels, such as soft lithography or directed self-assembly.

Explore further: Scientists take on the crystal maze

More information: “Pleats in crystals on curved surfaces,” William T.M. Irvine, University of Chicago; Vincenzo Vitelli, Leiden University; and Paul M. Chaikin, New York University, Nature, Dec. 16, 2010, Vol. 468, No. 7326, pp. 947-951. www.nature.com/nature/

Related Stories

Alienware's Giant Curved Monitor a Gamer's Delight

January 7, 2008

One of the more intriguing technologies at the Consumer Electronics Show (CES) being held this week is a 42-inch-long, curved monitor. Made by Alienware, the monitor is supposed to simulate peripheral vision. The sci-fi-like ...

It's raining pentagons

March 8, 2009

This week's Nature Materials (09 March 2009) reveals how an international team of scientists led by researchers at the London Centre for Nanotechnology (LCN) at UCL have discovered a novel one dimensional ice chain structure ...

Biology rides to computers' aid

October 19, 2010

Photonic crystals are exotic materials with the ability to guide light beams through confined spaces and could be vital components of low-power computer chips that use light instead of electricity. Cost-effective ways of ...

Polymer scientists make imprint on nanolithography

December 13, 2010

(PhysOrg.com) -- Nanolithography, or surface patterning on a nanoscale, is critical for modern technology, but has been developed largely for patterning flat surfaces until recently. A team of University of Akron scientists ...

Recommended for you

Doubling down on Schrödinger's cat

May 26, 2016

Yale physicists have given Schrödinger's famous cat a second box to play in, and the result may help further the quest for reliable quantum computing.

Possible case for fifth force of nature

May 26, 2016

A team of physicists at the University of California has uploaded a paper to the arXiv preprint server in which they suggest that work done by a team in Hungary last year might have revealed the existence of a fifth force ...

Optics breakthrough to revamp night vision

May 24, 2016

A breakthrough by an Australian collaboration of researchers could make infra-red technology easy-to-use and cheap, potentially saving millions of dollars in defense and other areas using sensing devices, and boosting applications ...

First movies of droplets getting blown up by x-ray laser

May 24, 2016

Researchers have made the first microscopic movies of liquids getting vaporized by the world's brightest X-ray laser at the Department of Energy's SLAC National Accelerator Laboratory. The new data could lead to better and ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

irbis
not rated yet Dec 24, 2010
About this physicalsystems.narod.ru/index05.03.a.engl.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.