Physicists grow pleats in two-dimensional curved spaces

Dec 23, 2010
University of Chicago physicist William Irvine and his colleagues are interested in how the interplay of geometry and light affect the structure of two-dimensional curved spaces, including those of a sphere (shown here), but also domes, waists and barrels. The team has developed methods for finely controlling pleats in these curved spaces, which may be useful in the design of nanoscale materials. (William Irvine

(PhysOrg.com) -- A design feature well known in skirts and trousers has now been identified in curved, two-dimensional crystals. As University of Chicago physicist William Irvine and his colleagues report in this week’s Nature, crystalline arrays of microscopic particles grown on a negatively curved surface can develop linear defects analogous to fabric pleats. The results will facilitate a more general exploration of defects in curved spaces, including potential applications in engineered materials.

The problem of tiling a curved surface with hexagons is familiar from soccer balls and geodesic domes, in which pentagons are added to accommodate the spherical (positive) curvature. Interacting particles that form hexagonal patterns on a plane — known as ‘colloidal ’ — adopt these and other types of topological defects when grown on a sphere.

Irvine, an assistant professor in physics, and colleagues have developed an experimental system that allows them to investigate crystal order on surfaces with spatially varying curvature, both positive and negative. On negatively curved surfaces, they observed two types of defect that hadn’t been seen before: isolated heptagons (analogous to the pentagons on a sphere) and pleats.

The pleats allow a finer control of crystal order with curvature than is possible with isolated point , and may find application in curved structures such as waisted nanotubes (long, thin microscopic cylinders of material that display novel properties), or in materials created by techniques that permit control at the atomic and molecular levels, such as soft lithography or directed self-assembly.

Explore further: Physicists advance understanding of transition metal oxides used in electronics

More information: “Pleats in crystals on curved surfaces,” William T.M. Irvine, University of Chicago; Vincenzo Vitelli, Leiden University; and Paul M. Chaikin, New York University, Nature, Dec. 16, 2010, Vol. 468, No. 7326, pp. 947-951. www.nature.com/nature/

Related Stories

Polymer scientists make imprint on nanolithography

Dec 13, 2010

(PhysOrg.com) -- Nanolithography, or surface patterning on a nanoscale, is critical for modern technology, but has been developed largely for patterning flat surfaces until recently. A team of University of ...

It's raining pentagons

Mar 08, 2009

This week's Nature Materials (09 March 2009) reveals how an international team of scientists led by researchers at the London Centre for Nanotechnology (LCN) at UCL have discovered a novel one dimensional ice ch ...

Biology rides to computers' aid

Oct 19, 2010

Photonic crystals are exotic materials with the ability to guide light beams through confined spaces and could be vital components of low-power computer chips that use light instead of electricity. Cost-effective ...

Alienware's Giant Curved Monitor a Gamer's Delight

Jan 07, 2008

One of the more intriguing technologies at the Consumer Electronics Show (CES) being held this week is a 42-inch-long, curved monitor. Made by Alienware, the monitor is supposed to simulate peripheral vision. ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

irbis
not rated yet Dec 24, 2010
About this physicalsystems.narod.ru/index05.03.a.engl.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.