Muscle filaments make mechanical strain visible

Dec 20, 2010
With the aid of a confocal rheometer, researchers can test the mechanical properties of a polymer network and, at the same time, capture images of the microscopic structure. Credit: Copyright TU Muenchen, all rights reserved.

Plastics-based materials have been in use for decades. But manufacturers are facing a serious hurdle in their quest for new developments: Substantial influences of the microscopic material structure on mechanical material properties cannot be observed directly. The synthetic polymer molecules are simply too small for microscopic observation in mechanical experiments. A team of physicists led by professor Andreas Bausch of the Technische Universitaet Muenchen (TUM, Germany) has now developed a method that allows just these kinds of measurements. They present their results in Nature Communications.

When polyethylene film is strongly stretched, it becomes more tear-resistant. This makes shopping bags significantly more resilient. The effect is ascribed to a reorganization of polymer chains. Some elastic polymers get softer with frequently recurring stress. This phenomenon was named the Mullins effect after its discoverer. However, what exactly the do when subjected to mechanical stress has so far not been sufficiently understood. One reason for this is that synthetic polymers are too small to be observed using microscopy methods during mechanical stress experiments. An improved understanding of the processes on a molecular level would save a lot of time and money in the development of new plastics.

Nature, too, takes advantage of the mechanical properties of polymers: Biological polymers give cells their stability and play a decisive role when they carry out their complex functions. Professor Andreas Bausch and his team used the muscle filament protein actin to build a new polymer network. The are visible under a . This allowed the scientists to directly observe the movements of the individual filaments when was applied to the material.

By simultaneously using a rheometer, which is used to study the mechanical properties of materials, and a confocal microscope, the scientists were able to study the behavior of the actin network during mechanical deformation and to film it in three dimensions.

In their studies, published in the online journal Nature Communications, the scientists successfully demonstrated that their model system sheds light not only on the molecular-level processes behind the Mullins effect, but also the opposite effect, which renders material tougher as a result of repeated stress.

The cause for the change in mechanical properties is extensive reorganization in the network structure, which was now observed directly for the first time. In the future, this model will help physicists to better understand changes in the properties of other materials, too.

Explore further: Metal encapsulation optimizes chemical reactions

More information: Cyclic hardening in bundled actin networks, K. M. Schmoller, P. Fernández, R. C. Arevalo, D. L. Blair und A. R. Bausch, Nature Communications, Vol. 1, 134, 7 December 2010 – DOI:10.1038/ncomms1134

Related Stories

Nano-particle dispersion technique improves polymers

Aug 29, 2005

Supercritical fluid carbon dioxide used; melt properties provide monitor There is a lot of excitement about incorporating nano particles into polymers because of the ability to improve various properties with only a small per ...

Single polymer chains as molecular wires

Feb 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

Soft Materials Buckle Up for Measurement

Jun 22, 2006

Buckling under pressure can be a good thing, say materials scientists at the National Institute of Standards and Technology. Writing in the June 13 issue of Macromolecules, they report a new method to evalua ...

Recommended for you

Metal encapsulation optimizes chemical reactions

27 minutes ago

The chemical industry consumes millions of tons of packing materials as catalytic sup- port media or adsorbents in fixed-bed reactors and heat storage systems. Fraunhofer researchers have developed a means of encapsulating ...

Fuel and chemicals from steel plant exhaust gases

1 hour ago

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

Self-assembly of molecular Archimedean polyhedra

1 hour ago

Chemists truly went back to the drawing board to develop new X-shaped organic building blocks that can be linked together by metal ions to form an Archimedean cuboctahedron. In the journal Angewandte Chemie, the sc ...

New method can make cheaper solar energy storage

4 hours ago

Storing solar energy as hydrogen is a promising way for developing comprehensive renewable energy systems. To accomplish this, traditional solar panels can be used to generate an electrical current that splits ...

New CMI process recycles magnets from factory floor

15 hours ago

A new recycling method developed by scientists at the Critical Materials Institute, a U.S. Department of Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from ...

Chemists characterize 3-D macroporous hydrogels

18 hours ago

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.