Muscle filaments make mechanical strain visible

Dec 20, 2010
With the aid of a confocal rheometer, researchers can test the mechanical properties of a polymer network and, at the same time, capture images of the microscopic structure. Credit: Copyright TU Muenchen, all rights reserved.

Plastics-based materials have been in use for decades. But manufacturers are facing a serious hurdle in their quest for new developments: Substantial influences of the microscopic material structure on mechanical material properties cannot be observed directly. The synthetic polymer molecules are simply too small for microscopic observation in mechanical experiments. A team of physicists led by professor Andreas Bausch of the Technische Universitaet Muenchen (TUM, Germany) has now developed a method that allows just these kinds of measurements. They present their results in Nature Communications.

When polyethylene film is strongly stretched, it becomes more tear-resistant. This makes shopping bags significantly more resilient. The effect is ascribed to a reorganization of polymer chains. Some elastic polymers get softer with frequently recurring stress. This phenomenon was named the Mullins effect after its discoverer. However, what exactly the do when subjected to mechanical stress has so far not been sufficiently understood. One reason for this is that synthetic polymers are too small to be observed using microscopy methods during mechanical stress experiments. An improved understanding of the processes on a molecular level would save a lot of time and money in the development of new plastics.

Nature, too, takes advantage of the mechanical properties of polymers: Biological polymers give cells their stability and play a decisive role when they carry out their complex functions. Professor Andreas Bausch and his team used the muscle filament protein actin to build a new polymer network. The are visible under a . This allowed the scientists to directly observe the movements of the individual filaments when was applied to the material.

By simultaneously using a rheometer, which is used to study the mechanical properties of materials, and a confocal microscope, the scientists were able to study the behavior of the actin network during mechanical deformation and to film it in three dimensions.

In their studies, published in the online journal Nature Communications, the scientists successfully demonstrated that their model system sheds light not only on the molecular-level processes behind the Mullins effect, but also the opposite effect, which renders material tougher as a result of repeated stress.

The cause for the change in mechanical properties is extensive reorganization in the network structure, which was now observed directly for the first time. In the future, this model will help physicists to better understand changes in the properties of other materials, too.

Explore further: Recycling industrial waste water: Scientists discover a new method of producing hydrogen

More information: Cyclic hardening in bundled actin networks, K. M. Schmoller, P. Fernández, R. C. Arevalo, D. L. Blair und A. R. Bausch, Nature Communications, Vol. 1, 134, 7 December 2010 – DOI:10.1038/ncomms1134

Provided by Technische Universitaet Muenchen

4.5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Nano-particle dispersion technique improves polymers

Aug 29, 2005

Supercritical fluid carbon dioxide used; melt properties provide monitor There is a lot of excitement about incorporating nano particles into polymers because of the ability to improve various properties with only a small per ...

Single polymer chains as molecular wires

Feb 27, 2009

The research team of Leonhard Grill at Freie Universität Berlin - in collaboration with the synthetic chemistry group of Stefan Hecht from Humboldt University of Berlin and the theoretical physics group of Christian ...

Soft Materials Buckle Up for Measurement

Jun 22, 2006

Buckling under pressure can be a good thing, say materials scientists at the National Institute of Standards and Technology. Writing in the June 13 issue of Macromolecules, they report a new method to evalua ...

Recommended for you

A greener source of polyester—cork trees

Apr 16, 2014

On the scale of earth-friendly materials, you'd be hard pressed to find two that are farther apart than polyester (not at all) and cork (very). In an unexpected twist, however, scientists are figuring out ...

A beautiful, peculiar molecule

Apr 16, 2014

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Metals go from strength to strength

Apr 15, 2014

To the human hand, metal feels hard, but at the nanoscale it is surprisingly malleable. Push a lump of metal with brute force through a right-angle mould or die, and while it might look much the same to the ...

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...