Missing molecules hold promise of therapy for pancreatic cancer

Dec 15, 2010

By determining what goes missing in human cells when the gene that is most commonly mutated in pancreatic cancer gets turned on, Johns Hopkins scientists have discovered a potential strategy for therapy.

The production of a particular cluster of genetic snippets known as microRNAs is dramatically reduced in human pancreatic compared to healthy tissue, the researchers report in a study published Dec. 15 in . When the team restored this tiny regulator, called miR-143/145, back to normal levels in human cells, those cells lost their ability to form tumors.

"Our finding that these specific microRNAs are downstream of the most important oncogene in pancreatic cancer sets the stage for developing methods to deliver them to tumors," says Josh Mendell, M.D., Ph.D., an associate professor in the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, and an early career scientist of the Howard Hughes Medical Institute. "When we restore microRNAs to cancer cells in which their levels are repressed, the cells no longer are tumorigenic. We have every reason to believe that the efficient delivery of miR-143/145, if achievable, would be therapeutically beneficial."

The team focused its investigation on KRAS, a member of the important RAS family of oncogenes that is mutated in almost all cases of the most common form of pancreatic cancer.

This video is not supported by your browser at this time.
Joshua Mendell discusses microRNA therapy for pancreatic cancer

The researchers conducted their studies in a multitude of model systems — human cells growing in culture as well as those harvested directly from tumors, and also in mice and zebrafish. First, using cell lines derived from pancreatic tumors and growing in culture, they added gene products such as mutant KRAS and an inhibitor of mutant KRAS, and then measured the microRNA responses. Next, they conducted the same experiments using cells from patients' pancreatic tumors. Finally, they looked at pancreatic tissue from mice and zebrafish to see what happened when KRAS was activated.

Every time, the team noted the same robust findings. When KRAS was activated, the microRNA cluster miR-143/145 was powerfully repressed, to a fraction of the levels in normal, non-cancerous cells. Restoring the expression of miR-143/145 back to the level of normal cells was sufficient to confer "a very striking change in behavior of those cells," Mendell says. When human pancreatic cancer cells with low microRNA levels were injected into mice, they formed tumors within 30 days. However, when the team restored the levels of microRNAs to the levels of normal cells and injected them into mice, tumors failed to form.

"Our findings showed that repression of the miR-143/145 microRNA cluster is a very important component of the tumor-promoting cellular program that is activated when KRAS is mutated in ," says Oliver Kent, a postdoctoral fellow in the Mendell laboratory and first author on the paper.

At some point in the process of a normal cell evolving into a tumor cell, it loses microRNAs. When the KRAS gene is mutated — a common event in pancreatic cancer — it somehow purges cells of miR-143/145, the cluster of microRNAs that normally put the brakes on tumorigenesis.

"It is likely that some microRNAs will have very broad antitumorigenic effects in many different types of cancers," says Mendell, whose lab is building animal models to investigate how different microRNAs participate in different tumor types. "In fact, there is already evidence that miR-143/145 can suppress other types of tumors such as colon and prostate cancer. On the other hand, the effects of some microRNAs will likely be very tumor-specific."

Merely 22 nucleotides in length, microRNAs are enigmatic bits of genetic material that, despite being pint-sized, apparently are mighty. This field of study is less than a decade old; scientists still don't have a good grasp on the fundamental role of microRNAs in normal biology.

"We need a better understanding of their basic functions to more fully understand how microRNAs participate in diseases," Mendell says.

Having studied microRNAs in the context of several types of cancer, Mendell says delivery remains a major issue for nucleic acid-based therapies.

"There is a lot of work going on to develop ways to deliver microRNAs to different tissue sites," Mendell says. "I'm optimistic that the liver and even the pancreas will become accessible to these types of therapies and benefit from them."

Explore further: No increased risk of second cancers with radiotx in pelvic CA

More information: Genes and Development: genesdev.cshlp.org/

Provided by Johns Hopkins Medical Institutions

4.5 /5 (2 votes)

Related Stories

Common cancer gene sends death order to tiny killer

May 31, 2007

Scientists at Johns Hopkins have discovered one way the p53 gene does what it's known for—stopping the colon cancer cells. Their report will be published in the June 8 issue of Molecular Cell.

When cells reach out and touch

May 01, 2009

MicroRNAs are single-stranded snippets that, not long ago, were given short shrift as genetic junk. Now that studies have shown they regulate genes involved in normal functioning as well as diseases such as cancer, everyone ...

Silencing small but mighty cancer inhibitors

Dec 10, 2007

Researchers from Johns Hopkins and the University of Pennsylvania have uncovered another reason why one of the most commonly activated proteins in cancer is in fact so dangerous. As reported in Nature Genetics this week, ...

Recommended for you

Scientists zero in on how lung cancer spreads

Dec 24, 2014

Cancer Research UK scientists have taken microscopic images revealing that the protein ties tethering cells together are severed in lung cancer cells - meaning they can break loose and spread, according to ...

Scientists identify rare cancer's genetic pathways

Dec 24, 2014

An international research team, including four Simon Fraser University scientists, has identified the "mutational landscape" of intrahepatic cholangiocarcinoma (ICC), a rare, highly fatal form of liver cancer that disproportionately ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.