550 million years ago rise in oxygen drove evolution of animal life

Dec 17, 2010
550 million years ago rise in oxygen drove evolution of animal life
Original image of Trichoplax adhaerens. Copyright: Karolin von der Chevallerie, University of Hannover

Researchers at the University of Oxford have uncovered a clue that may help to explain why the earliest evidence of complex multicellular animal life appears around 550 million years ago, when atmospheric oxygen levels on the planet rose sharply from 3% to their modern day level of 21%.

The team, led by Professor Chris Schofield, has found that humans share a method of sensing oxygen with the world's simplest known living animal - Trichoplax adhaerens - suggesting the method has been around since the first animals emerged around 550 million years ago.

This discovery, published today (17 December) in the January 2011 edition of EMBO Reports, throws light on how humans sense oxygen and how oxygen levels drove the very earliest stages of animal evolution.

Professor Schofield said "It's absolutely necessary for any multicellular organism to have a sufficient supply of oxygen to almost every cell and so the atmospheric rise in oxygen made it possible for to exist.

"But there was still a very different physiological challenge for these organisms than for the more evolutionarily ancient single-celled organisms such as bacteria. Being multicelluar means oxygen has to get to cells not on the surface of the organism. We think this is what drove the ancesters of Trichoplax adhaerens to develop a system to sense a lack of oxygen in any cell and then do something about it."

The oxygen sensing process enables animals to survive better at low oxygen levels, or 'hypoxia'. In humans this system responds to , such as is caused by high altitudes or physical exertion, and is very important for the prevention of stroke and heart attacks as well as some types of cancer.

Trichoplax adhaerens is a tiny seawater organism that lacks any organs and has only five types of cells, giving it the appearance of an amoeba. By analysing how Trichoplax reacts to a lack of oxygen, Oxford researcher Dr Christoph Loenarz found that it uses the same mechanism as humans - in fact, when the key enzyme from Trichoplax was put it in a human cell, it worked just as well as the human enzyme usually would.

They also looked at the genomes of several other species and found that this mechanism is present in multi-cellular animals, but not in the single-celled organisms that were the precursors of animals, suggesting that the mechanism evolved at the same time as the earliest multicellular animals

Defects in the most important human sensing enzyme can cause polycythemia
- an increase in red blood cells. The work published today could also open up new approaches to develop therapies for this disorder.

Professor Douglas Kell, Chief Executive, BBSRC said "Understanding how animals - and ultimately humans - evolved is essential to our ability to pick apart the workings of our cells. Knowledge of normal biological processes underpins new developments that can improve quality of for everyone. The more skilful we become in studying the of some of our most essential cell biology, the better our chances of ensuring long term health and well being to match the increase in average lifespan in the UK and beyond."

Explore further: Life's extremists may be an untapped source of antibacterial drugs

More information: A report entitled "The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, Trichoplax adhaerens" will be published in the January edition of EMBO Reports on 17 December 2010. The article is available online at dx.doi.org/10.1038/embor.2010.170 , together with an introduction that highlights key aspects of the research, at dx.doi.org/10.1038/embor.2010.192

Related Stories

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.