Trapped micro-cylinders act a bit like neurons

December 20, 2010

Researchers from TU Delft's Kavli Institute of Nanoscience and the Institut Non Linéaire de Nice, have shown that certain physical properties of rotating microscopic cylinders resemble those of communicating neurons, for example.

Both the micro-cylinders and the are 'excitable', i.e. they respond to an external disturbance by producing a pulse (e.g. a voltage) of a given, fixed size. The results of this study was published online on the Nature Physics website on December 19th.

Simultaneously, the researchers have shown that the rotating micro-cylinders can detect the presence of microscopic particles in liquid. This is because the presence of such particles in the vicinity of a rotating micro-cylinder produces a clearly measurable disturbance in the torque experienced by the cylinder. This provides a means of detecting, counting, or separating cells (or other microscopic particles) in liquids.

For the purposes of this study, the researchers employed optical torque tweezers. This unique instrument is capable of measuring both the force and angular momentum exerted on microscopic objects, including biological molecules such as DNA.

Explore further: Gluing particles together on the micro- and nano-scale

Related Stories

Gluing particles together on the micro- and nano-scale

June 14, 2009

Researchers at New York University have created a method to precisely bind nano- and micrometer-sized particles together into larger-scale structures with useful materials properties. Their work, which appears in the latest ...

Scientists generate rotating electron beams

September 17, 2010

A team of EU-funded scientists has come up with a way of generating rotating electron beams. The technique, described in the journal Nature, could be used to probe the magnetic properties of materials and could even be applied ...

Recommended for you

Light-driven atomic rotations excite magnetic waves

October 24, 2016

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how the ultrafast light-induced modulation of the atomic positions ...

New metamaterial paves way for terahertz technologies

October 24, 2016

A research team led by UCLA electrical engineers has developed an artificial composite material to control of higher-frequency electromagnetic waves, such as those in the terahertz and far-infrared frequencies.

Scientists manipulate surfaces to make them invisible

October 21, 2016

Most lenses, objectives, eyeglass lenses, and lasers come with an anti-reflective coating. Unfortunately, this coating works optimally only within a narrow wavelength range. Scientists at the Max Planck Institute for Intelligent ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.