New labeling method expands ability to read DNA modification

Dec 13, 2010 by Quinn Eastman

Researchers at Emory University School of Medicine and the University of Chicago have developed a method for labeling and mapping a "sixth nucleotide," whose biological role scientists are only beginning to explore.

The method is described online this week in .

The method allowed the researchers to see for the first time how 5-hydroxymethylcytosine (5-hmC) is distributed throughout the genome. Unlike 5-methylcytosine (5-mC), a chemical modification of DNA that is generally found on genes that are turned off, this extra layer of modification is enriched in active genes. 5-hmC appears to be more abundant in and , compared with other cell types, and its abundance increases substantially as the brain matures.

"The main reason why this DNA modification was not explored previously was because standard approaches didn't detect it. The groups that identified it had to isolate large amounts of DNA and analyze it directly," says co-senior author Peng Jin, PhD, professor of human genetics at Emory University School of Medicine. "I think the beauty of this work lies in how we combined an innovation in DNA chemistry with large-scale to achieve new insight."

In recent years, scientists have been examining the role of methylation, a modification of , one of the four bases that make up DNA (adenine, thymine, guanine are the others). When stem cells change into the cells that make up skin, blood, muscle or brain, helps shut inappropriate genes off. Changes in DNA methylation also underpin a healthy cell's transformation into a cancer cell.

In 2009, a second layer of modification on top of 5-mC emerged, with the discovery that 5-hmC was present in mouse brain and especially abundant in Purkinje cells, which are part of the cerebellum. While previous researchers had reported the presence of 5-hmC in human and animal DNA samples, current methods did not allow them to distinguish between 5-mC and 5-hmC.

Seeking to fill this gap, a team at the University of Chicago led by Chuan He, PhD, professor of chemistry, exploited the properties of an enzyme from a bacterial phage, which can attach a chemically modified sugar tag to 5-hmC. They collaborated with Jin, postdoc Keith Szulwach and colleagues to map where 5-hmC appears in the genome and in various cell types.

While the chemical labeling method allows the separation of DNA containing 5-hmC from other DNA, it does not yet provide the ability to see 5-mhC when DNA is read letter-by-letter. He, Jin and their colleagues are working on a higher resolution method for finer analysis.

Mouse embryonic stem cell DNA contains 5-hmC at a level of 500 parts per million, the researchers found. In a mouse's cerebellum, the level rises from 1000 to 4000 parts per million as the mouse becomes an adult and that part of the brain matures. In contrast to 5-mC, which is generally found on genes that are turned off, 5-hmC is enriched on active genes, the researchers found.

"This specific gene enrichment suggests that it is not just an intermediate step when cells need to get rid of DNA methylation, but it may have a unique function in gene regulation," Jin says.

Mutations in the enzymes responsible for converting 5-mC to 5-hmC have also been linked to a form of leukemia, he notes.

The team looked to see which genes tend to acquire 5-hmC as the brain ages, and found an enrichment for genes involved with neurodegeneration, the cell's response to low oxygen and growth of new blood vessels.

"Because the enzymes that convert 5-mC into 5-hmC require oxygen, this may be another way that cells sense and respond to oxygen levels and oxidative stress," Jin says.

Explore further: Investigators insert large DNA sequence into mammalian cells

Related Stories

New nucleotide could revolutionize epigenetics

Apr 16, 2009

Anyone who studied a little genetics in high school has heard of adenine, thymine, guanine and cytosine - the A,T,G and C that make up the DNA code. But those are not the whole story. The rise of epigenetics in the past decade ...

Recommended for you

Investigators insert large DNA sequence into mammalian cells

11 hours ago

For the first time, researchers have used a simplified technique derived from a defense mechanism evolved by bacteria and other single-celled organisms to successfully insert a large DNA sequence into a predetermined genomic ...

Can gene editing provide a solution to global hunger?

21 hours ago

According to the World Food Program, some 795 million people – one in nine people on earth – don't have enough food to lead a healthy active life. That will only get worse with the next global food cris ...

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.