Manufacturing medical implants at a high speed

Dec 13, 2010

Intelligent software from Siemens for virtual planning and for the control of machine tools is making it possible for medical implants to be manufactured faster and less expensively. The challenge with artificial knee, shoulder, or hip joints lies in the fact that the materials, such as titanium or chromium cobalt, are very difficult to machine, but the complex shapes must be produced very precisely in order to provide an optimal fit for the patient.

The increased longevity of people and their desire to remain active is driving increased demand for implants. In Germany, 200,000 joint and hip replacements are already being performed each year. To ensure that the implants are as durable and long-lasting as possible, increasingly harder materials are being used to make them. This not only increases the cost; it also poses greater challenges in terms of the implant . With a new milling technology and the high-speed cutting process from Siemens Industry Automation and Drive Technologies, implants can be made not only with ultimate precision; they can also be manufactured in less time and thus more cost effectively.

An optimally fitted implant begins with photos of the joint that is to be replaced. The images are taken with a or scanner. The doctor uses these pictures to virtually choose a suitable implant on the computer and positions it, with the help of 3D planning software, at the location of the joint to be replaced. A further Siemens planning tool, the CAD/CAM software NX CAM, simulates the production of the joint in a test run to avoid later damage to the expense titanium or chromium cobalt workpieces and to achieve an optimal precision fit. The traversing paths identified in the simulation are forwarded to the machine tools, which then use a metal-cutting process to produce these precision-fitted implants. The machines work with a spindle speed of 40,000 to 60,000 revolutions per minute.

The technology can also be used to manufacture dental implants, an application where fast, precision manufacturing of saves time and money for doctors and patients alike. The challenge is in the mass production of custom workpieces, which is actually an oxymoron. High-productivity dental manufacturing is only possible with an optimally coordinated process chain, from imaging of the patient’s condition to the production of the implant.

Explore further: Technology to help people with disabilities to learn and communicate

add to favorites email to friend print save as pdf

Related Stories

You have your MoM's ions

Mar 09, 2010

Hip replacement patients with metal-on-metal (MoM) implants (both the socket and hip ball are metal) pass metal ions to their infants during pregnancy, according to a new study presented today at the 2010 Annual Meeting of ...

Nanostructures improve bone response to titanium implants

Jul 03, 2008

Titanium implants were successfully introduced by P.-I. Brånemark and co-workers in 1969 for the rehabilitation of edentulous jaws. After 40 years of research and development, titanium is currently the most frequently used ...

Bone replacement from laser melting

Jun 03, 2010

(PhysOrg.com) -- In a medical emergency, a puncture of the cranium is commonly treated with an implant. While replacements made of titanium merely plug holes, a new kind of degradable implant stimulates the ...

Recommended for you

BPG image format judged awesome versus JPEG

Dec 17, 2014

If these three letters could talk, BPG, they would say something like "Farewell, JPEG." Better Portable Graphics (BPG) is a new image format based on HEVC and supported by browsers with a small Javascript ...

Atari's 'E.T.' game joins Smithsonian collection

Dec 15, 2014

One of the "E.T." Atari game cartridges unearthed this year from a heap of garbage buried deep in the New Mexico desert has been added to the video game history collection at the Smithsonian.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.