Longevity breakthrough: The metabolic state of mitochondria controls life span

December 1, 2010

If you think life's too short, then you're not alone. A team of scientists from Texas set out to find what it would take to live a very long life and they made important discoveries that bring longer life spans much closer to reality. A new research report featured on the cover of The FASEB Journal, describes how scientists "activated" life extension in the worm, C. elegans, and in the process discovered a new metabolic state correlating with long life.

"C. elegans has provided a useful for human biology," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "because of their relative simplicity and our understanding of the that control their . Helping these worms to live longer is a proof of concept; indeed much of what we now know about human aging was first worked out in these worms."

To make this discovery, scientists compared one class of long-lived C. elegans, called the Mit mutants, with non-mutant wild type C. elegans. Their comparison showed significant metabolism changes, suggesting that their cellular engines had been reconfigured to run on new fuels and to make new waste products, leading to increased lifespans.

To determine the cause of these metabolism changes, scientists created a new method for collecting cellular waste and studied it to identify the specific . They found that that the worms achieved long life through changes in how their cells extracted energy (metabolic state). Although C. elegans often is used as an animal model for human biology, more research is needed to determine if an equivalent metabolic state could be created in humans with the same results.

"This research on worms shows that the secret to a long life comes from how we extract energy from our food," said Gerald Weissmann, M.D., Editor-in-Chief of The . "With any luck, we'll be able to change human life in the same direction: onward and upward!"

Explore further: Signs of aging: Scientists evaluate genes associated with longevity

More information: Jeffrey A. Butler, Natascia Ventura, Thomas E. Johnson, and Shane L. Rea. Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism. FASEB J. December 2010 24:4977-4988; doi:10.1096/fj.10-162941

Related Stories

Worm study sheds light on human aging, inherited diseases

October 1, 2007

Microscopic worms used for scientific research are living longer despite cellular defects, a discovery that is shedding light on how the human body ages and how doctors could one day limit or reverse genetic mutations that ...

Recommended for you

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

Ancestral background can be determined by fingerprints

September 28, 2015

A proof-of-concept study finds that it is possible to identify an individual's ancestral background based on his or her fingerprint characteristics – a discovery with significant applications for law enforcement and anthropological ...

Bat species found to have tongue pump to pull in nectar

September 28, 2015

(Phys.org)—A trio of researchers affiliated with the University of Ulm in Germany and the Smithsonian Tropical Research Institute in Panama has found that one species of bat has a method of collecting nectar that has never ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.