Infrared sheds light on beneficial microbes

December 9, 2010 By Don Comis
Infrared sheds light on beneficial microbes
ARS scientists have turned an infrared tool used for analysis of grain and forage quality into a way to quickly analyze field soils for the presence of mycorrhizal fungi, which live in a symbiotic relationships with plant roots like the carrot root shown here. Micrograph courtesy of Francisco Calderon, ARS.

Infrared spectroscopy can quickly spot beneficial fungi on roots in soil, according to U.S. Department of Agriculture (USDA) soil scientist Francisco Calderon.

This type of spectroscopy has become established practice for quick and reliable analysis of grain and forage quality, as well as for other agricultural uses, thanks in part to work by scientists with the Agricultural Research Service (ARS), USDA's chief intramural scientific research agency.

But Calderon, who works at the ARS Central Great Plains Resources Management Research Unit in Akron, Colo., is the first to explore using the technology to detect fungal-root associations in soils.

The ability to quickly analyze field soils for these beneficial fungi, called mycorrhizae, would allow scientists to judge which crop rotations or other farming practices increase . This is important nationwide to improve crop yields, and especially critical in semi-arid areas like the Central Great Plains.

Mycorrhizal fungi live in a symbiotic relationship with plants. The fungi extend the reach of plants by taking up nutrients and water that would otherwise would be difficult for plant roots to reach. In exchange, the fungi feed on the carbon sources that plants provide.

Calderon says the test could simplify, speed, and make more objective measurements of mycorrhizae in root samples compared to the standard method of visual scoring through a microscope. Calderon developed the technique with ARS soil scientists Veronica Acosta-Martinez and Merle Vigil, at Lubbock, Texas, and Akron, respectively. Colleagues in this study also include David Douds, an ARS microbiologist in Wyndmoor, Pa., and James Reeves, an ARS chemist in Beltsville, Md.

The scientists measured the reflectance of infrared light from dried, powdered carrot root samples. They found that the cell wall chitin and fatty acids in mychorrhizal have distinct spectral signatures, absorbing infrared at wavelengths different than standard chitin and fatty acid samples and different than non-mychorrhizal root samples.

They plan to study the spectral properties of other crop-fungal species to see whether there are universal spectral signatures for this important group of organisms.

Explore further: Fungi adapted to mines boost plant growth

More information: This research was published in the Journal of Applied Spectroscopy.,+molecular,+optical+&+plasma+physics/journal/10812

Related Stories

Fungi adapted to mines boost plant growth

June 16, 2010

( -- Repopulating the moon-like terrain around abandoned mines is slow, plodding work, but a new Indiana University Bloomington report in Applied Soil Ecology suggests symbiotic fungi specifically adapted to toxic ...

With fungi on their side, rice plants grow to be big

June 10, 2010

By tinkering with a type of fungus that lives in association with plant roots, researchers have found a way to increase the growth of rice by an impressive margin. The so-called mycorrhizal fungi are found in association ...

Afla-Guard also protects corn crops

September 3, 2010

Afla-Guard®, a biological control used to thwart the growth of fungi on peanuts, can be used on corn as well, according to a study by U.S. Department of Agriculture (USDA) scientists who helped develop it.

Recommended for you

How Frankenstein saved humankind from probable extinction

October 28, 2016

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley's 1818 novel, "Frankenstein." ...

Closer look reveals tubule structure of endoplasmic reticulum

October 28, 2016

(—A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...

Computer model is 'crystal ball' for E. coli bacteria

October 28, 2016

It's difficult to make predictions, especially about the future, and even more so when they involve the reactions of living cells—huge numbers of genes, proteins and enzymes, embedded in complex pathways and feedback loops. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.