Image: Decorating the sky

December 27, 2010
Image Credit: NASA/JPL-Caltech/UCLA

This mosaic image taken by NASA's Wide-field Infrared Survey Explorer, or WISE, features three nebulae that are part of the giant Orion Molecular Cloud--the Flame nebula, the Horsehead nebula and NGC 2023.

Despite its name, there is no fire roaring in the Flame nebula. What makes this nebula shine is the bright blue star seen to the right of the central cloud. This star, Alnitak, is the easternmost star in Orion's belt. Wind and radiation from Alnitak blasts away electrons from the gas in the Flame nebula, causing it to become ionized and glow in visible light. The infrared glow seen by WISE is from dust warmed by Alnitak's radiation.

The famous Horsehead nebula appears in this image as a faint bump on the lower right side of the vertical dust ridge. In visible light, this nebula is easily recognizable as a dramatic silhouette in the shape of a horse's head. It is classified as a dark nebula because the dense cloud blocks out the visible light of the glowing gas behind it. WISE's infrared detectors can peer into the cloud to see the glow of the dust itself.

A third nebula, NGC 2023, can be seen as a bright circle in the lower half of the image. NGC 2023 is classified as a reflection nebula, meaning that the dust is reflecting the visible light of nearby stars. But here WISE sees the infrared glow of the warmed dust itself.

Color in this image represents specific . Blue represents light emitted at 3.4-micron wavelengths, mainly from hot stars. Relatively cooler objects, such as the dust of the nebulae, appear green and red. Green represents 4.6-micron light and red represents 12-micron light. This image was made from data collected after WISE began to run out of its supply of solid hydrogen cryogen in August 2010. Cryogen is a coolant used to make infrared detectors more sensitive. WISE mapped the entire sky by July using four infrared detectors, but during the period from August to October 2010, while the cryogen was depleting, WISE had only three detectors operational, and the 12-micron detector was less sensitive. This turned out to be a good thing in the case of this image, because the less-sensitive detector reduced the glare of the Flame portion of the nebula enough to bring out details of the rest of the .

Explore further: AKARI's view on birth and death of stars

Related Stories

AKARI's view on birth and death of stars

August 28, 2006

AKARI, the Japan Aerospace Exploration Agency (JAXA) infrared astronomical satellite with ESA participation, is continuing its survey of the sky and its mapping of our cosmos in infrared light. New exciting images recently ...

Orion in a New Ligh (w/ Video)

February 10, 2010

(PhysOrg.com) -- The Orion Nebula reveals many of its hidden secrets in a dramatic image taken by ESO’s new VISTA survey telescope. The telescope’s huge field of view can show the full splendour of the whole nebula and ...

WISE Captures a Cosmic Rose

March 16, 2010

(PhysOrg.com) -- A new infrared image from NASA's Wide-field Infrared Survey Explorer, or WISE, shows a cosmic rosebud blossoming with new stars. The stars, called the Berkeley 59 cluster, are the blue dots to the right of ...

WISE Captures the Unicorn's Rose

August 26, 2010

(PhysOrg.com) -- Unicorns and roses are usually the stuff of fairy tales, but a new cosmic image taken by NASA's Wide-field Infrared Explorer (WISE) shows the Rosette nebula located within the constellation Monoceros, or ...

Image: Dark reflections in the Southern Cross

October 28, 2010

NASA's Wide-field Infrared Survey Explorer, or WISE, captured this colorful image of the reflection nebula IRAS 12116-6001. This cloud of interstellar dust cannot be seen directly in visible light, but WISE's detectors observed ...

Recommended for you

Hubble finds clues to the birth of supermassive black holes

May 24, 2016

Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from Hubble and two other space telescopes, Italian researchers have found the best evidence yet for the seeds ...

Potential habitats for early life on Mars

May 24, 2016

Recently discovered evidence of carbonates beneath the surface of Mars points to a warmer and wetter environment in that planet's past. The presence of liquid water could have fostered the emergence of life.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.