Study of how genes activate yields surprising discovery

December 5, 2010

Scientists at Albert Einstein College of Medicine of Yeshiva University have made an unexpected finding about the method by which certain genes are activated. Contrary to what researchers have traditionally assumed, genes that work with other genes to build protein structures do not act in a coordinated way but instead are turned on randomly. The surprising discovery, described in the December 5 online edition of Nature Structural and Molecular Biology, may fundamentally change the way scientists think about the way cellular processes are synchronized.

All cells contain protein complexes that perform essential functions, such as producing energy and helping cells divide. Assembling these multi-protein structures requires many different genes, each of which codes for one of the proteins that, collectively, form what's known as the protein complex. Ribosomes, for example, are the vitally important structures on which proteins are synthesized. (The ribosomes of humans and most other organisms are composed of ribonucleic acid (RNA) and 80 different proteins.) Scientists have long assumed that genes involved in making such complex structures are activated in a highly-coordinated way.

"What we found was rather astonishing," said Robert Singer, Ph.D., professor and co-chair of anatomy and structural biology, professor of cell biology and of neuroscience at Einstein and senior author of the study. "The expression of the genes that make the protein subunits of ribosomes and other multi-protein complexes is not at all coordinated or co-regulated. In fact, such genes are so out of touch with each other that we dubbed them "clueless" genes."

This video is not supported by your browser at this time.
Saumil Gandhi, an M.D./Ph.D. candidate at Albert Einstein College of Medicine, discusses his new research which finds that, contrary to what researchers have assumed, genes that work with other genes to build protein structures do no act in a coordinated way. Credit: Albert Einstein College of Medicine

Gene expression involves transcribing a gene's deoxyribonucleic acid (DNA) message into molecules of messenger RNA, which migrate from the nucleus of a cell into the surrounding cytoplasm to serve as blueprints for protein construction. To assess the coordinated expression of particular genes, Dr. Singer and his colleagues measured the abundance of messenger RNA molecules transcribed by those genes in individual cells. The messenger RNA molecules made by clusters of clueless genes exhibited no more coordination than the from totally unrelated genes did.

The "clueless" genes coding for ribosomes and other multi-protein structures are referred to as housekeeping genes, since their essential tasks require them to be "on call" 24/7, while other gene clusters remain silent until special circumstances induce them to become active. The researchers found that these induced genes, in contrast to the "clueless" housekeeping genes, act in an expected (well-regulated) way. For example, growing yeast cells in nutrient media containing the sugar galactose triggered the highly-coordinated expression of the three genes required to metabolize galactose.

"Our findings show that for a major class of genes – those housekeeping genes that make ribosomes, proteasomes and other essential structures – cells employ very simple modes of that require much less coordination than previously thought," said Saumil Gandhi, the lead author of the study. "Those genes become active randomly, with each member of a functionally related gene cluster encoding a protein while having no clue what the other in the cluster are doing. Yet the cell somehow manages to deal with this randomness in successfully assembling these multi-protein complexes."

Explore further: Novel laboratory technique nudges genes into activity

More information: The paper, "Transcription of functionally related constitutive genes is not coordinated," appears in the December 5 online edition of Nature Structural and Molecular Biology.

Related Stories

Novel laboratory technique nudges genes into activity

January 29, 2007

A new technique that employs RNA, a tiny chemical cousin of DNA, to turn on genes could lead to therapeutics for conditions in which nudging a gene awake would help alleviate disease, researchers at UT Southwestern Medical ...

Mechanism of microRNAs deciphered

May 16, 2007

Over 30% of our genes are under the control of small molecules called microRNAs. They prevent specific genes from being turned into protein and regulate many crucial processes like cell division and development, but how they ...

Nature study shows how molecules escape from the nucleus

September 15, 2010

By constructing a microscope apparatus that achieves resolution never before possible in living cells, researchers at Albert Einstein College of Medicine of Yeshiva University have illuminated the molecular interactions that ...

Recommended for you

Plastic in 99 percent of seabirds by 2050

August 31, 2015

Researchers from CSIRO and Imperial College London have assessed how widespread the threat of plastic is for the world's seabirds, including albatrosses, shearwaters and penguins, and found the majority of seabird species ...

Researchers unveil DNA-guided 3-D printing of human tissue

August 31, 2015

A UCSF-led team has developed a technique to build tiny models of human tissues, called organoids, more precisely than ever before using a process that turns human cells into a biological equivalent of LEGO bricks. These ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

jonnyboy
2 / 5 (4) Dec 05, 2010
something is "clueless" for sure, but I am not sure it's the genes.
cyberCMDR
not rated yet Dec 06, 2010
It may be that these genes still use an original and less complex control mechanism that has been conserved. Producing ribosomes is pretty central to eukaryotic cells, so it must have been a pretty early development.
thingumbobesquire
1 / 5 (1) Dec 06, 2010
"Randomness" is in the mind of the beholder.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.