Light games with DNA

December 10, 2010
Figure 1: Schematic illustration showing fluorescence of the Dss base (left) and the Pn base (right) quenching the fluorescence upon hybridization. Credit: 2010 Ichiro Hirao

The diagnosis of hereditary diseases and the identification of genetic fingerprints hinge on high-sensitivity DNA imaging biotechnologies. These imaging tools detect specific genes in cells using fluorophores—fluorescent tags that can illuminate DNA structures—and quenchers that interact with these tags to prevent them from emitting light, effectively working as an ‘off switch’.

In a development that expands the detection toolbox and the genetic alphabet, a team led by Ichiro Hirao from the RIKEN Systems and Structural Biology Center, Yokohama, has now designed an artificial base pair between a fluorophore (Dss) and quenchers (Pn and Px). This method incorporates the pair into complementary DNA strands using polymerases and demonstrates that either Pn or Px can decrease the fluorescence of Dss upon hybridization (Fig. 1).

Hirao and his team previously developed artificial base pairs involving Dss because of its strong fluorescence, which could illuminate DNA and RNA structures. “This time, we can put out the candle lit by Dss using the quencher as its pairing partner at will,” he says.

Hirao notes that this ability is unique because fluorescent dye Dss and quencher Pn face each other on their respective ssDNA strand, forming an artificial DNA base pair that also works in biological systems. He says that this close proximity results in strong ‘contact quenching’ of the fluorophore.

Usually, researchers have attached fluorophores and quenchers to natural bases through a linker that mediates so-called fluorescence resonance energy transfer (FRET) between dyes. However, this process lacks efficiency compared to contact quenching. Also, according to Hirao, unlike the Dss–Pn system, typical fluorophore–quencher pairs cannot be introduced at specific positions in DNA strands using polymerases, limiting their applications.

After establishing that the pairs were compatible with natural DNA synthesis techniques, Hirao’s team integrated the Dss–Pn pair in the stem of molecular beacons—hairpin-shaped single-stranded DNA (ssDNA) structures that fluoresce upon hybridization with DNA targets. They found that the beacons detected the targets with high sensitivity and differentiated ssDNA containing one mismatched base.

Next, the researchers tested the performance of Dss–Px in polymerase chain reaction (PCR)—a powerful DNA amplification technique. Dss-bearing ssDNA fragments became less fluorescent upon assimilation of Px into synthesized chains, allowing the team to monitor the amplification process in real time.

“One of our present tasks is to apply this system to in vivo cell experiments,” says Hirao. “If it is possible, we will be able see the on–off of a specific gene expression.”

Explore further: Nanogen Issued Patent for Method of Monitoring PCR Using Fluorescent Energy Transfer

More information: Kimoto, M., Mitsui, et al. A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology. Journal of the American Chemical Society 132, 15418–15426 (2010). Article

Related Stories

Revealing Photographs of DNA

May 10, 2007

Ultrasensitive genetic detection methods could revolutionize the diagnosis and treatment of diseases. However, all the techniques until now have been far too technically demanding for broad application. Munich researchers ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Naturally-occurring protein enables slower-melting ice cream

August 31, 2015

(Phys.org)—Scientists have developed a slower-melting ice cream—consider the advantages the next time a hot summer day turns your child's cone with its dream-like mound of orange, vanilla and lemon swirls with chocolate ...

Antibody-making bacteria promise drug development

August 31, 2015

Monoclonal antibodies, proteins that bind to and destroy foreign invaders in our bodies, routinely are used as therapeutic agents to fight a wide range of maladies including breast cancer, leukemia, asthma, arthritis, psoriasis, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.