Formic acid in the engine (w/ Video)

Dec 01, 2010

(PhysOrg.com) -- Do ants hold the key to the fuel of the future? Formic acid provides more efficient and safer storage of hydrogen. It is an ideal way to store energy from renewable sources or to power 21st century cars.

Hydrogen is often referred to as the future replacement for . Despite being environmentally-friendly and efficient, it nevertheless has many drawbacks. Because it is extremely flammable, it must be stored in bulky pressurized cylinders. Scientists from the EPFL and their colleagues at the Leibniz-Institut für Katalyse have found a way around these obstacles. Once converted to formic acid, can be stored easily and safely. This is an ideal solution for storing energy from renewable sources like solar or wind power, or to power the cars of tomorrow.

Hydrogen is easy to produce from electrical energy. With a catalyst and the CO2 present in the atmosphere, scientists have been able to convert it to formic acid. Rather than a heavy cast iron cylinder filled with pressurized hydrogen, they obtain a non-flammable substance that is liquid at room temperature.

This video is not supported by your browser at this time.

In November 2010, EPFL laboratories produced the opposite reaction. Through a catalytic process, the formic acid reverts to CO2 and hydrogen, which can then be converted into electricity. A compact working prototype producing 2 kilowatts of power has been developed, and two companies have purchased a license to develop this technology: Granit (Switzerland) and Tekion (Canada).

Storing Renewable Energy

“Imagine for example that you have solar panels on your roof,” says Gabor Laurenczy, professor at the Laboratory of Organometallic and Medicinal Chemistry and Head of the Group of Catalysis for Energy and Environment.“In bad weather or at night, your formic acid battery will release the excess energy stored while the sun was shining.” In such a configuration, the method can restitute more than 60% of the original electrical energy.

This solution is extremely safe. The formic acid continuously releases very small amounts of hydrogen, “just what you need at the time for your energy consumption,” says the researcher.

Another advantage over conventional storage is that the method can store almost twice as much energy at equal volume. One liter of formic acid contains more than 53 grams of hydrogen, compared to just 28 grams for the same volume of pure hydrogen pressurized to 350 bars.

Finally, the researchers have developed a catalytic process using iron, which is readily available and inexpensive compared to “noble” metals such as platinum or ruthenium. As with all catalysts, no material is degraded during the process.

Formic acid at the pump

It is probably in the automotive field that the invention has the greatest potential. Currently, the prototypes produced by certain carmakers store hydrogen in conventional form, which entails problems such as risk of explosion, large volume pressurized tanks, difficulties in filling the tank quickly, etc.

The vehicles of the 21st century may run on formic acid. This solution allows for safer, more compact hydrogen as well as easier filling at the pump – is liquid at room temperature. “Technically, it is quite feasible. In fact, a number of major automobile manufacturers contacted us in 2008, when oil prices reached record highs,” says Gabor Laurenczy. “In my opinion, the only obstacle is cost.” It will be several years before drivers can pull up to any anthill and fill their tanks.

Explore further: Liquid helium offers a fascinating new way to make charged molecules

More information: onlinelibrary.wiley.com/doi/10… e.201004263/abstract

Provided by Ecole Polytechnique Federale de Lausanne

4 /5 (4 votes)
add to favorites email to friend print save as pdf

Related Stories

Energy from ceramics

Aug 17, 2006

Micro fuel cells are already being acclaimed as an alternative to batteries. However, producing them from hundreds of tiny separate parts is complex and expensive. An alternative is now available: ceramic fuel ...

Opposites Attract and Inspire Electrocatalyst

May 24, 2010

(PhysOrg.com) -- Tiny gold particles will surround themselves with even smaller platinum bits, creating a complex structure that could turn a common preservative, formic acid, into electricity in a fuel cell, ...

Hydrogen storage in nanoparticles works

Mar 31, 2008

Dutch chemist Kees Baldé has demonstrated that hydrogen can be efficiently stored in nanoparticles. This allows hydrogen storage to be more easily used in mobile applications. Baldé discovered that 30 nanometre particles ...

Experimental 'wind to hydrogen' system up and running

Jan 08, 2007

Xcel Energy and the U.S. Department of Energy’s National Renewable Energy Laboratory today unveiled a unique facility that uses electricity from wind turbines to produce and store pure hydrogen, offering what may become ...

Fuel cells: distant dream, but burning with promise

May 15, 2008

Some day, fuel cells may power your car and exhaust only water and perhaps carbon dioxide. More efficient and cleaner than an internal combustion engine, their emissions will be much lower. They may also run ...

Recommended for you

Amino acids key to new gold leaching process

Oct 24, 2014

Curtin University scientists have developed a gold and copper extraction process using an amino acid–hydrogen peroxide system, which could provide an environmentally friendly and cheaper alternative to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

deatopmg
1 / 5 (1) Dec 02, 2010
Formic acid is quite corrosive, same order of magnitude as hydrochloric acid, and it continually decomposes to water plus cumulatively toxic carbon MONoxide. A better solution would be to add another mole of hydrogen to the formic acid to make methanol.